You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book introduces the reader to multiscale mathematical modeling that starts by describing a physical process at the microscopic level, and is followed by the macroscopic description of that process. There are two preliminary chapters introducing the main equations of mathematical physics and serves as revision of all of the necessary mathematical notions needed to navigate the domain of multiscale research.The author gives a rigorous presentation of the tools of mathematical modeling, as well as an evaluation of the errors of the method. This allows readers to analyze the limitations and accuracy of the method.The book is accessible to a wide range of readers, from specialists in engineering to applied mathematicians working in the applications of materials science, biophysics and medicine.
The book includes lectures given by the plenary and key speakers at the 9th International ISAAC Congress held 2013 in Krakow, Poland. The contributions treat recent developments in analysis and surrounding areas, concerning topics from the theory of partial differential equations, function spaces, scattering, probability theory, and others, as well as applications to biomathematics, queueing models, fractured porous media and geomechanics.
This book provides a comprehensive exploration of Industry 6.0, which marks the convergence of intelligent systems, machine learning (ML), deep learning, and human–robot collaboration (HRC) in various sectors. It focuses on how these technologies enable businesses to harness insights from vast datasets, optimize operations, forecast maintenance requirements, and mitigate outages. In this comprehensive book, the authors cover the major aspects of Industry 6.0, including the latest advances in technology, new applications, and the many challenges that accompany the process that is changing it. This book acts as a compass, guiding readers through the labyrinth of Industry 6.0, revealing the c...
The two volumes contain 65 chapters, which are based on talks presented by reputable researchers in the field at the Tenth International Conference on Integral Methods in Science and Engineering. The chapters address a wide variety of methodologies, from the construction of boundary integral methods to the application of integration-based analytic and computational techniques in almost all aspects of today's technological world. Both volumes are useful references for a broad audience of professionals, including pure and applied mathematicians, physicists, biologists, and mechanical, civil, and electrical engineers, as well as graduate students, who use integration as a fundamental technique in their research.
Topics of this volume are close to scientific interests of Professor Maz'ya and use, directly or indirectly, the fundamental influential Maz'ya's works penetrating, in a sense, the theory of PDEs. In particular, recent advantages in the study of semilinear elliptic equations, stationary Navier-Stokes equations, the Stokes system in convex polyhedra, periodic scattering problems, problems with perturbed boundary at a conic point, singular perturbations arising in elliptic shells and other important problems in mathematical physics are presented.
This volume reflects the variety of areas where Maz'ya's results are fundamental, influential and/or pioneering. New advantages in such areas are presented by world-recognized experts and include, in particularly, Beurling's minimum principle, inverse hyperbolic problems, degenerate oblique derivative problems, the Lp-contractivity of the generated semigroups, some class of singular integral operators, general Cwikel-Lieb-Rozenblum and Lieb-Thirring inequalities,domains with rough boundaries, integral and supremum operators, finite rank Toeplitz operators, etc.
The fundamental contributions of Professor Maz'ya to the theory of function spaces and especially Sobolev spaces are well known and often play a key role in the study of different aspects of the theory, which is demonstrated, in particular, by presented new results and reviews from world-recognized specialists. Sobolev type spaces, extensions, capacities, Sobolev inequalities, pseudo-Poincare inequalities, optimal Hardy-Sobolev-Maz'ya inequalities, Maz'ya's isocapacitary inequalities in a measure-metric space setting and many other actual topics are discussed.
None