You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The book deals with the mathematical theory of vector variational inequalities with special reference to equilibrium problems. Such models have been introduced recently to study new problems from mechanics, structural engineering, networks, and industrial management, and to revisit old ones. The common feature of these problems is that given by the presence of concurrent objectives and by the difficulty of identifying a global functional (like energy) to be extremized. The vector variational inequalities have the advantage of both the variational ones and vector optimization which are found as special cases. Among several applications, the equilibrium flows on a network receive special attention. Audience: The book is addressed to academic researchers as well as industrial ones, in the fields of mathematics, engineering, mathematical programming, control theory, operations research, computer science, and economics.
Quadratic programs and affine variational inequalities represent two fundamental, closely-related classes of problems in the t,heories of mathematical programming and variational inequalities, resp- tively. This book develops a unified theory on qualitative aspects of nonconvex quadratic programming and affine variational inequ- ities. The first seven chapters introduce the reader step-by-step to the central issues concerning a quadratic program or an affine variational inequality, such as the solution existence, necessary and sufficient conditions for a point to belong to the solution set, and properties of the solution set. The subsequent two chapters discuss briefly two concrete nlodels (...
This is the second in a series of contributed, refereed volumes devoted to research in optimization by Australian researchers and their collaborators. These volumes are intended to have wide scope and include survey papers by established researchers providing up-to-date information on research directions. This volume includes survey and research papers on theories and methods of nonlinear programming, nonconvex and discrete optimization, stochastic linear programming, generalized convexity, complementarity and vector variational inequality problems, dynamic systems and optimal control and applications to traffic assignment models, train control, manufacturing systems and substrate diffusion of cutaneous tissue. Audience: Practitioners, postgraduate students and researchers in optimization.
This volume constitutes the proceedings of the Fifth International Conference on Multi-Objective Programming and Goal Programming: Theory & Appli cations (MOPGP'02) held in Nara, Japan on June 4-7, 2002. Eighty-two people from 16 countries attended the conference and 78 papers (including 9 plenary talks) were presented. MOPGP is an international conference within which researchers and prac titioners can meet and learn from each other about the recent development in multi-objective programming and goal programming. The participants are from different disciplines such as Optimization, Operations Research, Math ematical Programming and Multi-Criteria Decision Aid, whose common in terest is in m...
Continuous optimization is the study of problems in which we wish to opti mize (either maximize or minimize) a continuous function (usually of several variables) often subject to a collection of restrictions on these variables. It has its foundation in the development of calculus by Newton and Leibniz in the 17*^ century. Nowadys, continuous optimization problems are widespread in the mathematical modelling of real world systems for a very broad range of applications. Solution methods for large multivariable constrained continuous optimiza tion problems using computers began with the work of Dantzig in the late 1940s on the simplex method for linear programming problems. Recent re search in continuous optimization has produced a variety of theoretical devel opments, solution methods and new areas of applications. It is impossible to give a full account of the current trends and modern applications of contin uous optimization. It is our intention to present a number of topics in order to show the spectrum of current research activities and the development of numerical methods and applications.
We always come cross several decision-making problems in our daily life. Such problems are always conflicting in which many different view points should be satisfied. In politics, business, industrial systems, management science, networks, etc. one often encounters such kind of problems. The most important and difficult part in such problems is the conflict between various objectives and goals. In these problems, one has to find the minimum(or maximum) for several objective functions. Such problems are called vector optimization problems (VOP),multi-criteria optimization problems or multi-objective optimization problems. This volume deals with several different topics / aspects of vector optimization theory ranging from the very beginning to the most recent one. It contains fourteen chapters written by different experts in the field of vector optimization.
'Optimization Day' (OD) has been a series of annual mini-conferences in Aus tralia since 1994. The purpose of this series of events is to gather researchers in optimization and its related areas from Australia and their collaborators, in order to exchange new developments of optimization theories, methods and their applications. The first four OD mini-conferences were held in The Uni versity of Ballarat (1994), The University of New South Wales (1995), The University of Melbourne (1996) and Royal Melbourne Institute of Technology (1997), respectively. They were all on the eastern coast of Australia. The fifth mini-conference Optimization Days was held at the Centre for Ap plied Dynamics and ...
This proceedings volume covers the main fields of mathematics: analysis, algebra and number theory, geometry and topology, combinatorics and graphs, applied mathematics, numerical analysis and computer mathematics, probability and statistics, teaching and popularization of mathematics.
This volume deals with new topics in the areas of fixed point theory, variational inequality and complementarity problem theory, non-linear ergodic theory, difference, differential and integral equations, control and optimisation theory, dynamic system theory, inequality theory, stochastic analysis and probability theory, and their applications.