Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Regularity of Optimal Transport Maps and Applications
  • Language: en
  • Pages: 186

Regularity of Optimal Transport Maps and Applications

In this thesis, we study the regularity of optimal transport maps and its applications to the semi-geostrophic system. The first two chapters survey the known theory, in particular there is a self-contained proof of Brenier’ theorem on existence of optimal transport maps and of Caffarelli’s Theorem on Holder continuity of optimal maps. In the third and fourth chapter we start investigating Sobolev regularity of optimal transport maps, while in Chapter 5 we show how the above mentioned results allows to prove the existence of Eulerian solution to the semi-geostrophic equation. In Chapter 6 we prove partial regularity of optimal maps with respect to a generic cost functions (it is well known that in this case global regularity can not be expected). More precisely we show that if the target and source measure have smooth densities the optimal map is always smooth outside a closed set of measure zero.

Geometric Measure Theory and Free Boundary Problems
  • Language: en
  • Pages: 142

Geometric Measure Theory and Free Boundary Problems

This volume covers contemporary aspects of geometric measure theory with a focus on applications to partial differential equations, free boundary problems and water waves. It is based on lectures given at the 2019 CIME summer school “Geometric Measure Theory and Applications – From Geometric Analysis to Free Boundary Problems” which took place in Cetraro, Italy, under the scientific direction of Matteo Focardi and Emanuele Spadaro. Providing a description of the structure of measures satisfying certain differential constraints, and covering regularity theory for Bernoulli type free boundary problems and water waves as well as regularity theory for the obstacle problems and the developments leading to applications to the Stefan problem, this volume will be of interest to students and researchers in mathematical analysis and its applications.

Lectures on Elliptic Partial Differential Equations
  • Language: en
  • Pages: 234

Lectures on Elliptic Partial Differential Equations

  • Type: Book
  • -
  • Published: 2019-01-10
  • -
  • Publisher: Springer

The book originates from the Elliptic PDE course given by the first author at the Scuola Normale Superiore in recent years. It covers the most classical aspects of the theory of Elliptic Partial Differential Equations and Calculus of Variations, including also more recent developments on partial regularity for systems and the theory of viscosity solutions.

Symplectic Geometry
  • Language: en
  • Pages: 1158

Symplectic Geometry

Over the course of his distinguished career, Claude Viterbo has made a number of groundbreaking contributions in the development of symplectic geometry/topology and Hamiltonian dynamics. The chapters in this volume – compiled on the occasion of his 60th birthday – are written by distinguished mathematicians and pay tribute to his many significant and lasting achievements.

Almost Sure Scattering for the One Dimensional Nonlinear Schrödinger Equation
  • Language: en
  • Pages: 102

Almost Sure Scattering for the One Dimensional Nonlinear Schrödinger Equation

View the abstract.

Harmonic Analysis and Applications
  • Language: en
  • Pages: 361

Harmonic Analysis and Applications

The origins of the harmonic analysis go back to an ingenious idea of Fourier that any reasonable function can be represented as an infinite linear combination of sines and cosines. Today's harmonic analysis incorporates the elements of geometric measure theory, number theory, probability, and has countless applications from data analysis to image recognition and from the study of sound and vibrations to the cutting edge of contemporary physics. The present volume is based on lectures presented at the summer school on Harmonic Analysis. These notes give fresh, concise, and high-level introductions to recent developments in the field, often with new arguments not found elsewhere. The volume will be of use both to graduate students seeking to enter the field and to senior researchers wishing to keep up with current developments.

Trends in Contemporary Mathematics
  • Language: en
  • Pages: 309

Trends in Contemporary Mathematics

  • Type: Book
  • -
  • Published: 2014-08-27
  • -
  • Publisher: Springer

The topics faced in this book cover a large spectrum of current trends in mathematics, such as Shimura varieties and the Lang lands program, zonotopal combinatorics, non linear potential theory, variational methods in imaging, Riemann holonomy and algebraic geometry, mathematical problems arising in kinetic theory, Boltzmann systems, Pell's equations in polynomials, deformation theory in non commutative algebras. This work contains a selection of contributions written by international leading mathematicians who were speakers at the "INdAM Day", an initiative born in 2004 to present the most recent developments in contemporary mathematics.

Mathematical Methods in Liquid Crystal Optics and Lens Design
  • Language: en
  • Pages: 284

Mathematical Methods in Liquid Crystal Optics and Lens Design

None

Sets of Finite Perimeter and Geometric Variational Problems
  • Language: en
  • Pages: 475

Sets of Finite Perimeter and Geometric Variational Problems

An engaging graduate-level introduction that bridges analysis and geometry. Suitable for self-study and a useful reference for researchers.