You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
As the leading chronicler of the search for gravitational waves, Harry Collins has been right there with the scientists since the start.
This book is invaluable for teachers and students in high school and junior college who struggle to understand the principles of modern physics and incorporate scientific methods in their lessons. It provides interactive and multidisciplinary approaches that will help prepare present and future generations to face the technological and social challenges they will face. Rather than using a unidirectional didactic approach, the authors - scientists, philosophers, communication experts, science historians and science education innovators - divide the book into two parts; the first part, “Communicating Contemporary Physics”, examines how new physics developments affect modern culture, while the second part, “Digital Challenges for Physics Learning”, covers physics education research using ICT, plus the experiences of classroom teachers and a range of ideas and projects to innovate physics and STEM teaching.
According to the theory of relativity, we are constantly bathed in gravitational radiation. When stars explode or collide, a portion of their mass becomes energy that disturbs the very fabric of the space-time continuum like ripples in a pond. But proving the existence of these waves has been difficult; the cosmic shudders are so weak that only the most sensitive instruments can be expected to observe them directly. Fifteen times during the last thirty years scientists have claimed to have detected gravitational waves, but so far none of those claims have survived the scrutiny of the scientific community. Gravity's Shadow chronicles the forty-year effort to detect gravitational waves, while ...
The Marcel Grossmann meetings were conceived to promote theoretical understanding in the fields of physics, mathematics, astronomy and astrophysics and to direct future technological, observational, and experimental efforts. They review recent developments in gravitation and general relativity, with major emphasis on mathematical foundations and physical predictions. Their main objective is to bring together scientists from diverse backgrounds and their range of topics is broad, from more abstract classical theory and quantum gravity and strings to more concrete relativistic astrophysics observations and modeling. This Tenth Marcel Grossmann Meeting was organized by an international committe...
Peter Gabriel Bergmann started his work on general relativity in 1936 when he moved from Prague to the Institute for Advanced Study in Princeton. Bergmann collaborated with Einstein in an attempt to provide a geometrical unified field theory of gravitation and electromagnetism. Within this program they wrote two articles together: A. Einstein and P. G. Bergmann, Ann. Math. 39, 685 (1938) ; and A. Einstein, V. Bargmann and P. G. Bergmann, Th. von Karman Anniversary Volume 212 (1941). The search for such a theory was intense in the ten years following the birth of general relativity. In recent years, some of the geometrical ideas proposed in these publications have proved essential in contempo...
In 1975 the Marcel Grossmann Meetings were established by Remo Ruffini and Abdus Salam to provide a forum for discussion of recent advances in gravitation, general relativity, and relativistic field theories. In these meetings, which are held once every three years, every aspect of research is emphasized - mathematical foundations, physical predictions, and numerical and experimental investigations. The major objective of these meetings is to facilitate exchange among scientists, so as to deepen our understanding of the structure of space-time and to review the status of both the ground-based and the space-based experiments aimed at testing the theory of gravitation.The Marcel Grossmann Meet...
Observational and experimental data pertaining to gravity and cosmology are changing our view of the Universe. General relativity is a fundamental key for the understanding of these observations and its theory is undergoing a continuing enhancement of its intersection with observational and experimental data. These data include direct observations and experiments carried out in our solar system, among which there are direct gravitational wave astronomy, frame dragging and tests of gravitational theories from solar system and spacecraft observations. This book explores John Archibald Wheeler's seminal and enduring contributions in relativistic astrophysics and includes: the General Theory of ...
This volume contains the proceedings of the twelfth triannual International Conference on General Relativity and Gravitation, the premier conference for presentation and discussion of new ideas in relativity and cosmology. The volume will contain the invited talks as well as short reports on the parallel workshops that took place at the meeting. It will be essential reading for all research workers in relativity, cosmology and astrophysics.
This volume provides an updated understanding of the progress and current problems in the interplay between fundamental physics, astrophysics and cosmology.In the last years, the cross section between these fields has been increasing, both at the theoretical and experimental levels: particle physics experiments, astronomical observations, space satellite data. Such interplay has fruitfully influenced research activity setting up Astrofundamental physics.Topics covered in this volume are: early universe, large scale structure of the universe, dark matter problem, cosmic microwave background radiation, gravitational wave astronomy and neutrino astrophysics. The inter-relation between these top...