Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

To an Effective Local Langlands Correspondence
  • Language: en
  • Pages: 100

To an Effective Local Langlands Correspondence

Let F be a non-Archimedean local field. Let \mathcal{W}_{F} be the Weil group of F and \mathcal{P}_{F} the wild inertia subgroup of \mathcal{W}_{F}. Let \widehat {\mathcal{W}}_{F} be the set of equivalence classes of irreducible smooth representations of \mathcal{W}_{F}. Let \mathcal{A}^{0}_{n}(F) denote the set of equivalence classes of irreducible cuspidal representations of \mathrm{GL}_{n}(F) and set \widehat {\mathrm{GL}}_{F} = \bigcup _{n\ge 1} \mathcal{A}^{0}_{n}(F). If \sigma \in \widehat {\mathcal{W}}_{F}, let ^{L}{\sigma }\in \widehat {\mathrm{GL}}_{F} be the cuspidal representation matched with \sigma by the Langlands Correspondence. If \sigma is totally wildly ramified, in that it...

Representations of Reductive Groups
  • Language: en
  • Pages: 466

Representations of Reductive Groups

This volume contains the proceedings of the Conference on Representation Theory and Algebraic Geometry, held in honor of Joseph Bernstein, from June 11–16, 2017, at the Weizmann Institute of Science and The Hebrew University of Jerusalem. The topics reflect the decisive and diverse impact of Bernstein on representation theory in its broadest scope. The themes include representations of p -adic groups and Hecke algebras in all characteristics, representations of real groups and supergroups, theta correspondence, and automorphic forms.

On Certain $L$-Functions
  • Language: en
  • Pages: 658

On Certain $L$-Functions

Illuminate various areas of the study of geometric, analytic, and number theoretic aspects of automorphic forms and their $L$-functions, and both local and global theory are addressed. Topics discussed in the articles include Langlands functoriality, the Rankin-Selberg method, the Langlands-Shahidi method, motivic Galois groups, Shimura varieties, orbital integrals, representations of $p$-adic groups, Plancherel formula and its consequences, and the Gross-Prasad conjecture.

The Local Langlands Conjecture for GL(2)
  • Language: en
  • Pages: 352

The Local Langlands Conjecture for GL(2)

The Local Langlands Conjecture for GL(2) contributes an unprecedented text to the so-called Langlands theory. It is an ambitious research program of already 40 years and gives a complete and self-contained proof of the Langlands conjecture in the case n=2. It is aimed at graduate students and at researchers in related fields. It presupposes no special knowledge beyond the beginnings of the representation theory of finite groups and the structure theory of local fields.

Automorphic Forms and Related Geometry: Assessing the Legacy of I.I. Piatetski-Shapiro
  • Language: en
  • Pages: 454

Automorphic Forms and Related Geometry: Assessing the Legacy of I.I. Piatetski-Shapiro

This volume contains the proceedings of the conference Automorphic Forms and Related Geometry: Assessing the Legacy of I.I. Piatetski-Shapiro, held from April 23-27, 2012, at Yale University, New Haven, CT. Ilya I. Piatetski-Shapiro, who passed away on 21 February 2009, was a leading figure in the theory of automorphic forms. The conference attempted both to summarize and consolidate the progress that was made during Piatetski-Shapiro's lifetime by him and a substantial group of his co-workers, and to promote future work by identifying fruitful directions of further investigation. It was organized around several themes that reflected Piatetski-Shapiro's main foci of work and that have promis...

Trends in Number Theory
  • Language: en
  • Pages: 258

Trends in Number Theory

This volume contains the proceedings of the Fifth Spanish Meeting on Number Theory, held from July 8-12, 2013, at the Universidad de Sevilla, Sevilla, Spain. The articles contained in this book give a panoramic vision of the current research in number theory, both in Spain and abroad. Some of the topics covered in this volume are classical algebraic number theory, arithmetic geometry, and analytic number theory. This book is published in cooperation with Real Sociedad Matemática Española (RSME).

Multiple Hilbert Transforms Associated with Polynomials
  • Language: en
  • Pages: 132

Multiple Hilbert Transforms Associated with Polynomials

Nothing provided

Hyperbolic Groupoids and Duality
  • Language: en
  • Pages: 120

Hyperbolic Groupoids and Duality

The author introduces a notion of hyperbolic groupoids, generalizing the notion of a Gromov hyperbolic group. Examples of hyperbolic groupoids include actions of Gromov hyperbolic groups on their boundaries, pseudogroups generated by expanding self-coverings, natural pseudogroups acting on leaves of stable (or unstable) foliation of an Anosov diffeomorphism, etc. The author describes a duality theory for hyperbolic groupoids. He shows that for every hyperbolic groupoid G there is a naturally defined dual groupoid G⊤ acting on the Gromov boundary of a Cayley graph of G. The groupoid G⊤ is also hyperbolic and such that (G⊤)⊤ is equivalent to G. Several classes of examples of hyperbolic groupoids and their applications are discussed.

Quasi-Linear Perturbations of Hamiltonian Klein-Gordon Equations on Spheres
  • Language: en
  • Pages: 92

Quasi-Linear Perturbations of Hamiltonian Klein-Gordon Equations on Spheres

The Hamiltonian ∫X(∣∂tu∣2+∣∇u∣2+m2∣u∣2)dx, defined on functions on R×X, where X is a compact manifold, has critical points which are solutions of the linear Klein-Gordon equation. The author considers perturbations of this Hamiltonian, given by polynomial expressions depending on first order derivatives of u. The associated PDE is then a quasi-linear Klein-Gordon equation. The author shows that, when X is the sphere, and when the mass parameter m is outside an exceptional subset of zero measure, smooth Cauchy data of small size ϵ give rise to almost global solutions, i.e. solutions defined on a time interval of length cNϵ−N for any N. Previous results were limited either to the semi-linear case (when the perturbation of the Hamiltonian depends only on u) or to the one dimensional problem. The proof is based on a quasi-linear version of the Birkhoff normal forms method, relying on convenient generalizations of para-differential calculus.