You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
In this volume, a detailed description of cutting-edge computational methods applied to protein modeling as well as specific applications are presented. Chapters include: the application of Car-Parrinello techniques to enzyme mechanisms, the outline and application of QM/MM methods, polarizable force fields, recent methods of ligand docking, molecular dynamics related to NMR spectroscopy, computer optimization of absorption, distribution, metabolism and excretion extended by toxicity for drugs, enzyme design and bioinformatics applied to protein structure prediction. A keen emphasis is laid on the clear presentation of complex concepts, since the book is primarily aimed at Ph.D. students, who need an insight in up-to-date protein modeling. The inclusion of descriptive, color figures will allow the reader to get a pictorial representation of complicated structural issues.
Hungarian mathematics has always been known for discrete mathematics, including combinatorial number theory, set theory and recently random structures, and combinatorial geometry. The recent volume contains high level surveys on these topics with authors mostly being invited speakers for the conference "Horizons of Combinatorics" held in Balatonalmadi, Hungary in 2006. The collection gives an overview of recent trends and results in a large part of combinatorics and related topics.
This book is the first one specifically dedicated to the structural bioinformatics of membrane proteins. With a focus on membrane proteins from the perspective of bioinformatics, the present work covers a broad spectrum of topics in evolution, structure, function, and bioinformatics of membrane proteins focusing on the most recent experimental results. Leaders in the field who have recently reported breakthrough advances cover algorithms, databases and their applications to the subject. The increasing number of recently solved membrane protein structures makes the expert coverage presented here very timely. Structural bioinformatics of membrane proteins has been an active area of research over the last thee decades and proves to be a growing field of interest.
A look at the methods and algorithms used to predict protein structure A thorough knowledge of the function and structure of proteins is critical for the advancement of biology and the life sciences as well as the development of better drugs, higher-yield crops, and even synthetic bio-fuels. To that end, this reference sheds light on the methods used for protein structure prediction and reveals the key applications of modeled structures. This indispensable book covers the applications of modeled protein structures and unravels the relationship between pure sequence information and three-dimensional structure, which continues to be one of the greatest challenges in molecular biology. With thi...
Bioinformatics, computational biology, is a relatively new field that applies computer science and information technology to biology. In recent years, the discipline of bioinformatics has allowed biologists to make full use of the advances in Computer sciences and Computational statistics for advancing the biological data. Researchers in life sciences generate, collect and need to analyze an increasing number of different types of scientific data, DNA, RNA and protein sequences, in-situ and microarray gene expression including 3D protein structures and biological pathways. This book is aiming to provide information on bioinformatics at various levels. The chapters included in this book cover introductory to advanced aspects, including applications of various documented research work and specific case studies related to bioinformatics. This book will be of immense value to readers of different backgrounds such as engineers, scientists, consultants and policy makers for industry, government, academics and social and private organisations.
Explores regular structures in graphs and contingency tables by spectral theory and statistical methods This book bridges the gap between graph theory and statistics by giving answers to the demanding questions which arise when statisticians are confronted with large weighted graphs or rectangular arrays. Classical and modern statistical methods applicable to biological, social, communication networks, or microarrays are presented together with the theoretical background and proofs. This book is suitable for a one-semester course for graduate students in data mining, multivariate statistics, or applied graph theory; but by skipping the proofs, the algorithms can also be used by specialists w...
One of the aims of the conference on which this book is based, was to provide a platform for the exchange of recent findings and new ideas inspired by the so-called Hungarian construction and other approximate methodologies. This volume of 55 papers is dedicated to Miklós Csörgő a co-founder of the Hungarian construction school by the invited speakers and contributors to ICAMPS'97.This excellent treatize reflects the many developments in this field, while pointing to new directions to be explored. An unequalled contribution to research in probability and statistics.
At the heart of most high-throughput methods is the technique of polymerase chain reaction (PCR). This book focuses on primer design, which is critical to both the efficiency and the accuracy of the PCR. With intricate descriptions of basic approaches as well as specialized methods, "PCR Primer Design" is an exceptional reference for all those involved in studying the genome.
Dynamic Models in Biology offers an introduction to modern mathematical biology. This book provides a short introduction to modern mathematical methods in modeling dynamical phenomena and treats the broad topics of population dynamics, epidemiology, evolution, immunology, morphogenesis, and pattern formation. Primarily employing differential equations, the author presents accessible descriptions of difficult mathematical models. Recent mathematical results are included, but the author's presentation gives intuitive meaning to all the main formulae. Besides mathematicians who want to get acquainted with this relatively new field of applications, this book is useful for physicians, biologists,...
From the Internet to networks of friendship, disease transmission, and even terrorism, the concept--and the reality--of networks has come to pervade modern society. But what exactly is a network? What different types of networks are there? Why are they interesting, and what can they tell us? In recent years, scientists from a range of fields--including mathematics, physics, computer science, sociology, and biology--have been pursuing these questions and building a new "science of networks." This book brings together for the first time a set of seminal articles representing research from across these disciplines. It is an ideal sourcebook for the key research in this fast-growing field. The b...