You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Over the last quarter of this century, revolutionary advances have been made both in kind and in precision in the application of particle traps to the study of thephysics of charged particles, leading to intensi?ed interest in, and wide proliferation of, this topic. This book is intended as a timely addition to the literature, providing a systematic uni?ed treatment of the subject, from the point of view of the application of these devices to fundamental atomic and particle physics. Thetechniqueofusingelectromagnetic?eldstocon?neandisolateatomic particles in vacuo, rather than by material walls of a container, was initially conceivedbyW.Paulintheformofa3Dversionoftheoriginalrfquadrupole mass ?lter, for which he shared the 1989 Nobel Prize in physics [1], whereas H.G. Dehmelt who also shared the 1989 Nobel Prize [2] saw these devices (including the Penning trap) as a way of isolating electrons and ions, for the purposes of high resolution spectroscopy. These two broad areas of appli- tion have developed more or less independently, each attaining a remarkable degree of sophistication and generating widespread interest and experimental activity.
For more than a century, studies of atomic hydrogen have been a rich source of scientific discoveries. These began with the Balmer series in 1885 and the early quantum theories of the atom, and later included the development of QED and the first successful gauge field theory. Today, hydrogen and its relatives continue to provide new fundamental information, as witnessed by the contributions to this book. The printed volume contains invited reviews on the spectroscopy of hydrogen, muonium, positronium, few-electron ions and exotic atoms, together with related topics such as frequency metrology and the determination of fundamental constants. The accompanying CD contains, in addition to these reviews, a further 40 contributed papers also presented at the conference "Hydrogen Atom 2" held in summer 2000. Finally, to facilitate a historical comparison, the CD also contains the proceedings of the first "Hydrogen Atom" conference of 1988. The book includes a foreword by Norman F. Ramsey.
Plasma Physics: Confinement, Transport and Collective Effects provides an overview of modern plasma research with special focus on confinement and related issues. Beginning with a broad introduction, the book leads graduate students and researchers – also those from related fields - to an understanding of the state-of-the-art in modern plasma physics. Furthermore, it presents a methodological cross section ranging from plasma applications and plasma diagnostics to numerical simulations, the latter providing an increasingly important link between theory and experiment. Effective references guide the reader from introductory texts through to contemporary research. Some related exercises in computational plasma physics are supplied on a special web site
This Open Access book gives a comprehensive account of both the history and current achievements of molecular beam research. In 1919, Otto Stern launched the revolutionary molecular beam technique. This technique made it possible to send atoms and molecules with well-defined momentum through vacuum and to measure with high accuracy the deflections they underwent when acted upon by transversal forces. These measurements revealed unforeseen quantum properties of nuclei, atoms, and molecules that became the basis for our current understanding of quantum matter. This volume shows that many key areas of modern physics and chemistry owe their beginnings to the seminal molecular beam work of Otto Stern and his school. Written by internationally recognized experts, the contributions in this volume will help experienced researchers and incoming graduate students alike to keep abreast of current developments in molecular beam research as well as to appreciate the history and evolution of this powerful method and the knowledge it reveals.
This thesis presents the first isotope-shift measurement of bound-electron g-factors of highly charged ions and determines the most precise value of the electron mass in atomic mass units, which exceeds the value in the literature by a factor of 13. As the lightest fundamental massive particle, the electron is one of nature’s few central building blocks. A precise knowledge of its intrinsic properties, such as its mass, is mandatory for the most accurate tests in physics - the Quantum Electrodynamics tests that describe one of the four established fundamental interactions in the universe. The underlying measurement principle combines a high-precision measurement of the Larmor-to-cyclotron frequency ratio on a single hydrogen-like carbon ion studied in a Penning trap with very accurate calculations of the so-called bound-electron g-factor. For the isotope-shift measurement, the bound-electron g-factors of two lithium-like calcium isotopes have been measured with relative uncertainties of a few 10^{-10}, constituting an as yet unrivaled level of precision for lithium-like ions.
This book reviews the present state of knowledge of the anomalous magnetic moment a=(g-2)/2 of the muon. The muon anomalous magnetic moment is one of the most precisely measured quantities in elementary particle physics and provides one of the most stringent tests of relativistic quantum field theory as a fundamental theoretical framework. It allows for an extremely precise check of the standard model of elementary particles and of its limitations.
This volume contains the lectures and seminars presented at the NATO Advanced Study Institute on "Applied Laser Spectroscopy" the fourteenth course of the Europhysics School of Quantum Electronics, held under the supervision of the Quantum Electronics Division of the European Physical Society. The Institute was held at Centro "I Cappuccini", San Miniato, Tuscany, Italy, September 3-15,1989. The Europhysics School of Quantum Electronics was started in 1970 with the aim of providing instruction for young researchers and advanced students already engaged in the area of quantum electronics or wishing to switch to this area from a different background. Presently the school is under the direction of Professors F.T. Arecchi and M Inguscio, University of Florence and Prof. H. Walther University of Munich and has the headquarters at the National Institute of Optics (INO), Firenze, Italy. Each time the directors choose a subject of particular interest, alternating fundamental topics with technological ones, and ask colleagues specifically competent in a given area to take the scientific responsibility for that course.
Quo Vadis: Evolution of Modern Navigation presents an intelligent and intelligible account of the essential principles underlying the design of satellite navigational systems—with introductory chapters placing them in context with the early development of navigational methods. The material is organized roughly as follows: the first third of the book deals with navigation in the natural world, the early history of navigation, navigating by the stars, precise mechanical chronometers for the determination of longitude at sea, and the development of precise quartz controlled clocks. Then, the reader is introduced to quantum ideas as a lead in to a discussion of microwave and optical interactio...