You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book is the first comprehensive treatment of numerical polynomial algebra, an area which so far has received little attention.
Ten years ago, the term "defect correction" was introduced to characterize a class of methods for the improvement of an approximate solution of an operator equation. This class includes many well-known techniques (e.g. Newton's method) but also some novel approaches which have turned out to be quite efficient. Meanwhile a large number of papers and reports, scattered over many journals and institutions, have appeared in this area. Therefore, a working conference on "Error Asymptotics and Defect Corrections" was organized by K. Bohmer, V. Pereyra and H. J. Stetter at the Mathematisches Forschungsinstitut Oberwolfach in July 1983, a meeting which aimed at bringing together a good number of the...
Proceedings of the Third Workshop on Computer Algebra in Scientific Computing, Samarkand, Octobe5r 5-9, 2000
Approximate Commutative Algebra is an emerging field of research which endeavours to bridge the gap between traditional exact Computational Commutative Algebra and approximate numerical computation. The last 50 years have seen enormous progress in the realm of exact Computational Commutative Algebra, and given the importance of polynomials in scientific modelling, it is very natural to want to extend these ideas to handle approximate, empirical data deriving from physical measurements of phenomena in the real world. In this volume nine contributions from established researchers describe various approaches to tackling a variety of problems arising in Approximate Commutative Algebra.
This work addresses the increasingly important role of numerical methods in science and engineering. It combines traditional and well-developed topics with other material such as interval arithmetic, elementary functions, operator series, convergence acceleration, and continued fractions.
Computer algebra systems are now ubiquitous in all areas of science and engineering. This highly successful textbook, widely regarded as the 'bible of computer algebra', gives a thorough introduction to the algorithmic basis of the mathematical engine in computer algebra systems. Designed to accompany one- or two-semester courses for advanced undergraduate or graduate students in computer science or mathematics, its comprehensiveness and reliability has also made it an essential reference for professionals in the area. Special features include: detailed study of algorithms including time analysis; implementation reports on several topics; complete proofs of the mathematical underpinnings; and a wide variety of applications (among others, in chemistry, coding theory, cryptography, computational logic, and the design of calendars and musical scales). A great deal of historical information and illustration enlivens the text. In this third edition, errors have been corrected and much of the Fast Euclidean Algorithm chapter has been renovated.
Proceedings -- Computer Arithmetic, Algebra, OOP.
The thoroughly refereed post-proceedings of the Second International Conference on Symbolic and Numerical Scientific Computation, SNSC 2001, held in Hagenberg, Austria, in September 2001. The 19 revised full papers presented were carefully selected during two rounds of reviewing and improvement. The papers are organized in topical sections on symbolics and numerics of differential equations, symbolics and numerics in algebra and geometry, and applications in physics and engineering.
CASC 2001 continues a tradition ~ started in 1998 ~ of international con ferences on the latest advances in the application of computer algebra systems to the solution of various problems in scientific computing. The three ear (CASs) lier conferences in this sequence, CASC'98, CASC'99, and CASC 2000, were held, Petersburg, Russia, in Munich, Germany, and in Samarkand, respectively, in St. Uzbekistan, and proved to be very successful. We have to thank the program committee, listed overleaf, for a tremendous job in soliciting and providing reviews for the submitted papers. There were more than three reviews per submission on average. The result of this job is reflected in the present volume, w...
Computer Vision is a rapidly growing field of research investigating computational and algorithmic issues associated with image acquisition, processing, and understanding. It serves tasks like manipulation, recognition, mobility, and communication in diverse application areas such as manufacturing, robotics, medicine, security and virtual reality. This volume contains a selection of papers devoted to theoretical foundations of computer vision covering a broad range of fields, e.g. motion analysis, discrete geometry, computational aspects of vision processes, models, morphology, invariance, image compression, 3D reconstruction of shape. Several issues have been identified to be of essential interest to the community: non-linear operators; the transition between continuous to discrete representations; a new calculus of non-orthogonal partially dependent systems.