You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Concurrency is an integral part of everyday life. The concept is so ingrained in our existence that we benefit from it without realizing. When faced with a taxing problem, we automatically involve others to solve it more easily. Such concurrent solutions to a complex problem may, however, not be quite straightforward and communication becomes crucial to ensure the successful solution of the problem.
This book documents the scientific outcome of the Third International Workshop on Hybrid Systems, held in Ithaca, NY, USA, in October 1994. It presents a selection of carefully reviewed and revised full papers chosen from the workshop contribution and is the successor to LNCS 736, the seminal "Hybrid Systems" volume edited by Grossman, Nerode, Ravn, and Rischel. Hybrid systems are models for networks of digital and continuous devices, in which digital control programs sense and supervise continuous and discrete plants governed by differential or difference equations. The investigation of hybrid systems is creating a new and fascinating discipline bridging mathematics, computer science, and control engineering.
A man may imagine he understands something, but still not understand anything in the way that he ought to. (Paul of Tarsus, 1 Corinthians 8:2) Calling this a ‘practical theory’ may require some explanation. Theory and practice are often thought of as two di?erent worlds, governed bydi?erentideals,principles, andlaws.DavidLorgeParnas, forinstance,who hascontributedmuchtoourtheoreticalunderstandingofsoftwareengineering and also to sound use of theory in the practice of it, likes to point out that ‘theoretically’ is synonymous to ‘not really’. In applied mathematics the goal is to discover useful connections between these two worlds. My thesis is that in software engineering this tw...
This book constitutes the strictly refereed post-proceedings of the 5th International Hybrid Systems Workshop held in Notre Dame, Indiana, USA in September 1998. The 23 revised full papers presented in the book have gone through two rounds of thorough reviewing and revision. The volume presents state-of-the-art research results and particularly addresses such areas as program verification, concurrent and distributed processes, logic programming, logics of programs, discrete event simulation, calculus of variations, optimization, differential geometry, Lie algebras, automata theory, dynamical systems, etc.
The art, craft, discipline, logic, practice and science of developing large-scale software products needs a professional base. The textbooks in this three-volume set combine informal, engineeringly sound approaches with the rigor of formal, mathematics-based approaches. This volume covers the basic principles and techniques of specifying systems and languages. It deals with modelling the semiotics (pragmatics, semantics and syntax of systems and languages), modelling spatial and simple temporal phenomena, and such specialized topics as modularity (incl. UML class diagrams), Petri nets, live sequence charts, statecharts, and temporal logics, including the duration calculus. Finally, the book presents techniques for interpreter and compiler development of functional, imperative, modular and parallel programming languages. This book is targeted at late undergraduate to early graduate university students, and researchers of programming methodologies. Vol. 1 of this series is a prerequisite text.
Cyber-physical systems (CPSs) combine cyber capabilities, such as computation or communication, with physical capabilities, such as motion or other physical processes. Cars, aircraft, and robots are prime examples, because they move physically in space in a way that is determined by discrete computerized control algorithms. Designing these algorithms is challenging due to their tight coupling with physical behavior, while it is vital that these algorithms be correct because we rely on them for safety-critical tasks. This textbook teaches undergraduate students the core principles behind CPSs. It shows them how to develop models and controls; identify safety specifications and critical properties; reason rigorously about CPS models; leverage multi-dynamical systems compositionality to tame CPS complexity; identify required control constraints; verify CPS models of appropriate scale in logic; and develop an intuition for operational effects. The book is supported with homework exercises, lecture videos, and slides.
Formal methods are coming of age. Mathematical techniques and tools are now regarded as an important part of the development process in a wide range of industrial and governmental organisations. A transfer of technology into the mainstream of systems development is slowly, but surely, taking place. FM’99, the First World Congress on Formal Methods in the Development of Computing Systems, is a result, and a measure, of this new-found maturity. It brings an impressive array of industrial and applications-oriented papers that show how formal methods have been used to tackle real problems. These proceedings are a record of the technical symposium ofFM’99:alo- side the papers describingapplic...
This book constitutes the refereed proceedings of the 20th international Conference on Foundations of Software Technology and Theoretical Computer Science, FST TCS 2000, held in New Delhi, India in December 2000. The 36 revised full papers presented were carefully reviewed and selected from a total of 141 submissions; also included are six invited papers. The volume provides broad coverage of the logical and mathematical foundations of computer science and spans the whole range of theoretical computer science.
Concurrent and distributed processes occur everywhere: in embedded systems, in information networks and databases, and in the form of applets roaming around on the World-Wide-Web. This book presents and develops state-of-the-art validation techniques for detecting safety violations; the focus is on the correctness of techniques that suffice for fully automatic validation of key components of such systems. It builds on and extends the notion of types, popular in many sequential programming languages as a technique for catching certain kinds of errors already at program development time, by incorporating behaviours (or structured effects) that are able to track the information flow in the presence of procedures, channel based communication, and the dynamic creation of network topologies. The technical development is performed for a language based on Concurrent ML.
The 1999 Annual Conference of the European Association for Computer Science Logic, CSL’99, was held in Madrid, Spain, on September 20-25, 1999. CSL’99 was the 13th in a series of annual meetings, originally intended as Internat- nal Workshops on Computer Science Logic, and the 8th to be held as the - nual Conference of the EACSL. The conference was organized by the Computer Science Departments (DSIP and DACYA) at Universidad Complutense in M- rid (UCM). The CSL’99 program committee selected 34 of 91 submitted papers for p- sentation at the conference and publication in this proceedings volume. Each submitted paper was refereed by at least two, and in almost all cases, three di erent referees. The second refereeing round, previously required before a - per was accepted for publication in the proceedings, was dropped following a decision taken by the EACSL membership meeting held during CSL’98 (Brno, Czech Republic, August 25, 1998).