You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
A graduate-level textbook, Hybrid Dynamical Systems provides an accessible and comprehensive introduction to the theory of hybrid systems. It emphasizes results that are central to a good understanding of the importance and role of such systems. The authors have developed the materials in this book while teaching courses on hybrid systems, cyber-physical systems, and formal methods. This textbook helps students to become familiar with both the major approaches coloring the study of hybrid dynamical systems. The computer science and control systems points of view – emphasizing discrete dynamics and real time, and continuous dynamics with switching, respectively – are each covered in detai...
"There are three words that characterize this work: thoroughness, completeness and clarity. The authors are congratulated for taking the time to write an excellent linear systems textbook!" —IEEE Transactions on Automatic Control Linear systems theory plays a broad and fundamental role in electrical, mechanical, chemical and aerospace engineering, communications, and signal processing. A thorough introduction to systems theory with emphasis on control is presented in this self-contained textbook, written for a challenging one-semester graduate course. A solutions manual is available to instructors upon adoption of the text. The book’s flexible coverage and self-contained presentation also make it an excellent reference guide or self-study manual. For a treatment of linear systems that focuses primarily on the time-invariant case using streamlined presentation of the material with less formal and more intuitive proofs, please see the authors’ companion book entitled A Linear Systems Primer.
The area of intelligent control is a fusion of a number of research areas in engineering computer science and mathematics, which has evolved from conventional control to enhance the existing nonlinear, optimal, adaptive and stochastic control methods. Intelligent control techniques are currently being utilized for closed-loop feedback control in space-based applications, manufacturing systems, robotic systems, avionic systems, among others, to improve system performance, reliability and efficiency. Overall, the primary objective of intelligent control is to enhance the performance of the system to the extent that it achieves some level of autonomous control.
Based on a streamlined presentation of the authors’ successful work Linear Systems, this textbook provides an introduction to systems theory with an emphasis on control. Initial chapters present necessary mathematical background material for a fundamental understanding of the dynamical behavior of systems. Each chapter includes helpful chapter descriptions and guidelines for the reader, as well as summaries, notes, references, and exercises at the end. The emphasis throughout is on time-invariant systems, both continuous- and discrete-time.
Hybrid dynamical systems are a class of complex systems that involve interacting discrete-event and continuous-variable dynamics. They are important in applications in embedded systems, cyber-physical systems, robotics, manufacturing systems, traffic management, biomolecular networks, and have recently been at the center of intense research activity in the control theory, computer-aided verification, and artificial intelligence communities. This paper provides a tutorial introduction to this multidisciplinary research area. A number of fundamental topics, such as modeling, abstraction, verification, supervisory control, stability analysis, stabilization, and optimal control of hybrid systems are introduced and discussed. Additionally, more advanced topics are briefly discussed at the end of each chapter with references given for further reading.
Supervisory Control of Discrete Event Systems Using Petri Nets presents a novel approach to its subject. The concepts of supervisory control and discrete event systems are explained, and the background material on general Petri net theory necessary for using the book's control techniques is provided. A large number of examples is used to illustrate the concepts and techniques presented in the text, and there are plenty of references for those interested in additional study or more information on a particular topic. Supervisory Control of Discrete Event Systems Using Petri Nets is intended for graduate students, advanced undergraduates, and practicing engineers who are interested in the contr...
This book contains the proceedings of the Workshop on Networked Embedded Sensing and Control. This workshop aims at bringing together researchers working on different aspects of networked embedded systems in order to exchange research experiences and to identify the main scientific challenges in this exciting new area.
It is with great pleasure that I offer my reflections on Professor Anthony N. Michel's retirement from the University of Notre Dame. I have known Tony since 1984 when he joined the University of Notre Dame's faculty as Chair of the Depart ment of Electrical Engineering. Tony has had a long and outstanding career. As a researcher, he has made im portant contributions in several areas of systems theory and control theory, espe cially stability analysis of large-scale dynamical systems. The numerous awards he received from the professional societies, particularly the Institute of Electrical and Electronics Engineers (IEEE), are a testament to his accomplishments in research. He received the IEE...
This monograph introduces a class of networked control systems (NCS) called model-based networked control systems (MB-NCS) and presents various architectures and control strategies designed to improve the performance of NCS. The overall performance of NCS considers the appropriate use of network resources, particularly network bandwidth, in conjunction with the desired response of the system being controlled. The book begins with a detailed description of the basic MB-NCS architecture that provides stability conditions in terms of state feedback updates. It also covers typical problems in NCS such as network delays, network scheduling, and data quantization, as well as more general control p...
An essential, up-to-date textbook for postgraduate trainees preparing for the EBCOG Fellowship exam.