You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Electric Power Transformer Engineering, Third Edition expounds the latest information and developments to engineers who are familiar with basic principles and applications, perhaps including a hands-on working knowledge of power transformers. Targeting all from the merely curious to seasoned professionals and acknowledged experts, its content is structured to enable readers to easily access essential material in order to appreciate the many facets of an electric power transformer. Topically structured in three parts, the book: Illustrates for electrical engineers the relevant theories and principles (concepts and mathematics) of power transformers Devotes complete chapters to each of 10 part...
The Electric Power Engineering Handbook, Third Edition updates coverage of recent developments and rapid technological growth in crucial aspects of power systems, including protection, dynamics and stability, operation, and control. With contributions from worldwide field leaders—edited by L.L. Grigsby, one of the world’s most respected, accomplished authorities in power engineering—this reference includes chapters on: Nonconventional Power Generation Conventional Power Generation Transmission Systems Distribution Systems Electric Power Utilization Power Quality Power System Analysis and Simulation Power System Transients Power System Planning (Reliability) Power Electronics Power Syst...
Photovoltaic power systems are becoming a significant source of energy in our energy resource mix today. It is essential these systems are reliable, safe and secure. Precise engineering design is required to insure these new power systems meet these requirements. In particular, interconnected systems with existing utility power systems must operate in synchronism and improve overall quality of the electrical power grid. This book is intended to identify and explain engineering procedures for the design and operation of photovoltaic systems. It includes a review of conventional electrical power systems as implemented in the United States and common to all electrical systems throughout the world and introduces other types of renewable energy systems. The heart of the book is focused on the design of interconnected and stand-alone PV systems–battery storage is becoming an integral part of PV systems, and a significant portion of the text is dedicated to energy storage for stand-alone and back-up power systems. The author also highlights how economics and structural considerations are an essential part of the engineering design process.
Photovoltaic power systems are becoming a significant source of energy in our energy resource mix today. It is essential these systems are reliable, safe and secure. Precise engineering design is required to insure these new power systems meet these requirements. In particular, interconnected systems with existing utility power systems must operate in synchronism and improve overall quality of the electrical power grid. This book is intended to identify and explain engineering procedures for the design and operation of photovoltaic systems. It includes a review of conventional electrical power systems as implemented in the United States and common to all electrical systems throughout the world and introduces other types of renewable energy systems. The heart of the book is focused on the design of interconnected and stand-alone PV systems–battery storage is becoming an integral part of PV systems, and a significant portion of the text is dedicated to energy storage for stand-alone and back-up power systems. The author also highlights how economics and structural considerations are an essential part of the engineering design process.