You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Provides a rapid introduction to the world of vector and parallel processing for these linear algebra applications.
Table of contents
Numerical software is used to test scientific theories, design airplanes and bridges, operate manufacturing lines, control power plants and refineries, analyze financial derivatives, identify genomes, and provide the understanding necessary to derive and analyze cancer treatments. Because of the high stakes involved, it is essential that results computed using software be accurate, reliable, and robust. Unfortunately, developing accurate and reliable scientific software is notoriously difficult. This book investigates some of the difficulties related to scientific computing and provides insight into how to overcome them and obtain dependable results. The tools to assess existing scientific a...
This compact yet thorough tutorial is the perfect introduction to the basic concepts of solving partial differential equations (PDEs) using parallel numerical methods. In just eight short chapters, the authors provide readers with enough basic knowledge of PDEs, discretization methods, solution techniques, parallel computers, parallel programming, and the run-time behavior of parallel algorithms to allow them to understand, develop, and implement parallel PDE solvers. Examples throughout the book are intentionally kept simple so that the parallelization strategies are not dominated by technical details.
A valuable reference on the Lanczos method for graduate numerical analysts and engineers.
Large-scale problems of engineering and scientific computing often require solutions of eigenvalue and related problems. This book gives a unified overview of theory, algorithms, and practical software for eigenvalue problems. It organizes this large body of material to make it accessible for the first time to the many nonexpert users who need to choose the best state-of-the-art algorithms and software for their problems. Using an informal decision tree, just enough theory is introduced to identify the relevant mathematical structure that determines the best algorithm for each problem.
Parallel processing has been an enabling technology in scientific computing for more than 20 years. This book is the first in-depth discussion of parallel computing in 10 years; it reflects the mix of topics that mathematicians, computer scientists, and computational scientists focus on to make parallel processing effective for scientific problems. Presently, the impact of parallel processing on scientific computing varies greatly across disciplines, but it plays a vital role in most problem domains and is absolutely essential in many of them. Parallel Processing for Scientific Computing is divided into four parts: The first concerns performance modeling, analysis, and optimization; the second focuses on parallel algorithms and software for an array of problems common to many modeling and simulation applications; the third emphasizes tools and environments that can ease and enhance the process of application development; and the fourth provides a sampling of applications that require parallel computing for scaling to solve larger and realistic models that can advance science and engineering.
Mathematics of Computing -- Numerical Analysis.
The most comprehensive and up-to-date discussion available of the Lanczos and CG methods for computing eigenvalues and solving linear systems.
This is the first entry-level book on algorithmic (also known as automatic) differentiation (AD), providing fundamental rules for the generation of first- and higher-order tangent-linear and adjoint code. The author covers the mathematical underpinnings as well as how to apply these observations to real-world numerical simulation programs. Readers will find: examples and exercises, including hints to solutions; the prototype AD tools dco and dcc for use with the examples and exercises; first- and higher-order tangent-linear and adjoint modes for a limited subset of C/C++, provided by the derivative code compiler dcc; a supplementary website containing sources of all software discussed in the book, additional exercises and comments on their solutions (growing over the coming years), links to other sites on AD, and errata.