You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The effects of weak and strong advection on the dynamics of reaction-diffusion models have long been studied. In contrast, the role of intermediate advection remains poorly understood. For example, concentration phenomena can occur when advection is strong, providing a mechanism for the coexistence of multiple populations, in contrast with the situation of weak advection where coexistence may not be possible. The transition of the dynamics from weak to strong advection is generally difficult to determine. In this work the authors consider a mathematical model of two competing populations in a spatially varying but temporally constant environment, where both species have the same population d...
Haim Brezis has made significant contributions in the fields of partial differential equations and functional analysis. He is an inspiring teacher and counsellor of many mathematicians in the front ranks. The collection of papers presented in this volume, reflect Brezis's elegant way of creative thinking.
This book presents topics of science and engineering which occur in nature or are part of daily life. It describes phenomena which are modelled by partial differential equations, relating to physical variables like mass, velocity and energy, etc. to their spatial and temporal variations. The author has chosen topics representing his career-long interests, including the flow of fluids and gases, granular flows, biological processes like pattern formation on animal skins, kinetics of rarified gases and semiconductor devices. Each topic is presented in its scientific or engineering context, followed by an introduction of applicable mathematical models in the form of partial differential equations.
This volume contains articles representing the courses given at the 2005 RSME Santalo Summer School on ``Recent Trends in Cryptography''. The main goal of the Summer School was to present some of the recent mathematical methods used in cryptography and cryptanalysis. The School was oriented to graduate and doctoral students, as well as recent doctorates. The material is presented in an expository manner with many examples and references. The topics in this volume cover some of the most interesting new developments in public key and symmetric key cryptography, such as pairing based cryptography and lattice based cryptanalysis.
This monograph explores the concept of the Brouwer degree and its continuing impact on the development of important areas of nonlinear analysis. The authors define the degree using an analytical approach proposed by Heinz in 1959 and further developed by Mawhin in 2004, linking it to the Kronecker index and employing the language of differential forms. The chapters are organized so that they can be approached in various ways depending on the interests of the reader. Unifying this structure is the central role the Brouwer degree plays in nonlinear analysis, which is illustrated with existence, surjectivity, and fixed point theorems for nonlinear mappings. Special attention is paid to the computation of the degree, as well as to the wide array of applications, such as linking, differential and partial differential equations, difference equations, variational and hemivariational inequalities, game theory, and mechanics. Each chapter features bibliographic and historical notes, and the final chapter examines the full history. Brouwer Degree will serve as an authoritative reference on the topic and will be of interest to professional mathematicians, researchers, and graduate students.
View the abstract.
View the abstract.
Transports in fluids can be approached from two complementary perspectives. In the Eulerian view of mixing, the focus is on the concentration field. In the Langrangian view, fluid parcels are followed around as they move with the flow, experiencing chaotic or stochastic motion. This book examines both pictures, presenting a number of theoretical and experimental lectures on various aspects of transport and mixing of active and passive particles in geophysical flows.
This book describes about unlike usual differential dynamics common in mathematical physics, heterogenesis is based on the assemblage of differential constraints that are different from point to point. The construction of differential assemblages will be introduced in the present study from the mathematical point of view, outlining the heterogeneity of the differential constraints and of the associated phase spaces, that are continuously changing in space and time. If homogeneous constraints well describe a form of swarm intelligence or crowd behaviour, it reduces dynamics to automatisms, by excluding any form of imaginative and creative aspect. With this study we aim to problematize the pro...
This book contains fourteen research papers which are expanded versions of conferences given at a meeting held in September 1996 in Cortona, Italy. The topics include blowup questions for quasilinear equations in two dimensions, time decay of waves in LP, uniqueness results for systems of conservation laws in one dimension, concentra tion effects for critical nonlinear wave equations, diffraction of nonlin ear waves, propagation of singularities in scattering theory, caustics for semi-linear oscillations. Other topics linked to microlocal analysis are Sobolev embedding theorems in Weyl-Hormander calculus, local solv ability for pseudodifferential equations, hypoellipticity for highly degen e...