You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
It is a great challenge in chemistry to clarify every detail of reaction processes. In older days chemists mixed starting materials in a flask and took the resul tants out of it after a while, leaving all the intermediate steps uncleared as a sort of black box. One had to be content with only changing temperature and pressure to accelerate or decelerate chemical reactions, and there was almost no hope of initiating new reactions. However, a number of new techniques and new methods have been introduced and have provided us with a clue to the examination of the black box of chemical reaction. Flash photolysis, which was invented in the 1950s, is such an example; this method has been combined w...
The field of High-Resolution Spectroscopy has been considerably extended and even redefined in some areas. Combining the knowledge of spectroscopy, laser technology, chemical computation, and experiments, Handbook of High-Resolution Spectroscopy provides a comprehensive survey of the whole field as it presents itself today, with emphasis on the recent developments. This essential handbook for advanced research students, graduate students, and researchers takes a systematic approach through the range of wavelengths and includes the latest advances in experiment and theory that will help and guide future applications. The first comprehensive survey in high-resolution molecular spectroscopy for...
Manipulation and Dilution Tools for Ruling Abundant Species "NMR is dead" was the slogan heard in the late 1960s at least among physicists, until John S. Waugh and his co-workers initiated a series of new NMR experiments, which employed the coherent modulation of interactions by strong radiofrequency fields. A wealth of new phenomena was observed, which are summarized in the introduction for the convenience of the unbiased reader, whereas Section 2 collects the basic spin interactions observed in solids. Line-narrowing effects in dipolar coupled solids by the application of multiple pulse experiments are extensively discussed in Section 3. Numerous extensions of the basic Waugh, Huber, and H...
With contributions by numerous experts
From the initial observation of proton magnetic resonance in water and in paraffin, the discipline of nuclear magnetic resonance has seen unparalleled growth as an analytical method. Modern NMR spectroscopy is a highly developed, yet still evolving, subject which finds application in chemistry, biology, medicine, materials science and geology. In this book, emphasis is on the more recently developed methods of solution-state NMR applicable to chemical research, which are chosen for their wide applicability and robustness. These have, in many cases, already become established techniques in NMR laboratories, in both academic and industrial establishments. A considerable amount of information and guidance is given on the implementation and execution of the techniques described in this book.
Photoemission spectroscopy is one of the most extensively used methods to study the electronic structure of atoms, molecules, and solids and their surfaces. This volume introduces and surveys the field at highest energy and momentum resolutions allowing for a new range of applications, in particular for studies of high temperature superconductors.
The field of High-Resolution Spectroscopy has been considerably extended and even redefined in some areas. Combining the knowledge of spectroscopy, laser technology, chemical computation, and experiments, Handbook of High-Resolution Spectroscopy provides a comprehensive survey of the whole field as it presents itself today, with emphasis on the recent developments. This essential handbook for advanced research students, graduate students, and researchers takes a systematic approach through the range of wavelengths and includes the latest advances in experiment and theory that will help and guide future applications. The first comprehensive survey in high-resolution molecular spectroscopy for...
The field of Nuclear Magnetic Resonance (NMR) has developed at a fascinating pace during the last decade. It always has been an extremely valuable tool to the organic chemist by supplying molecular "finger print" spectra at the atomic level. Unfortunately the high resolution achievable in liquid solutions could not be obtained in solids and physicists and physical chemists had to live with unresolved lines open to a wealth of curve fitting procedures and a vast amount of speculations. High resolution NMR in solids seemed to be a paradoxon. Broad structure less lines are usually encountered when dealing with NMR in solids. Only with the recent advent of mUltiple pulse, magic angle, cross-pola...
High Resolution Spectroscopy discusses the underlying concepts in the different branches of spectroscopy, especially in high resolution spectroscopy. The coverage of the book includes basic principles such as the quantization of energy, as well as the interaction of electromagnetic radiation with atoms and molecules; general experimental methods and features of instrumentation; and microwave, millimeter wave, and lamb dip spectroscopy. Also covered in the book are subjects such as the principles behind rotational spectroscopy; diatomic and polyatomic molecules in vibrational spectroscopy; and the electronic spectroscopy of atoms, as well as diatomic and polyatomic molecules. The text is recommended for engineers and physicists who would like to know more about the concepts, theories, methods, and instrumentation related to spectroscopy, particularly in the field of high resolution spectroscopy.