You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Phaser is a sophisticated program for IBM personal com- puters, developed atBrown University by the author and some of his students, which enables usersto experiment with differential and difference equations and dynamical systems in an interactive environment using graphics. This book begins with a brief discussion of the geometric inter- pretation of differential equations and numerical methods, and proceeds to guide the student through the use of the program. To run Phaser, you need an IBM PC, XT, AT, or PS/2 with an IBM Color GRaphics Board (CGB), Enhanced Graphics Adapter (VGA). A math coprocessor is supported; however, one is not required for Phaser to run on the above hardware.
Phaser is a sophisticated program for IBM personal com- puters, developed atBrown University by the author and some of his students, which enables usersto experiment with differential and difference equations and dynamical systems in an interactive environment using graphics. This book begins with a brief discussion of the geometric inter- pretation of differential equations and numerical methods, and proceeds to guide the student through the use of the program. To run Phaser, you need an IBM PC, XT, AT, or PS/2 with an IBM Color GRaphics Board (CGB), Enhanced Graphics Adapter (VGA). A math coprocessor is supported; however, one is not required for Phaser to run on the above hardware.
Remote viewing is the mental ability to perceive and describe places, persons, or events at distant locations in the past, present, and future. This book describes the science and theory of the remote-viewing phenomenon. The reality of the remote-viewing phenomenon is not in dispute among a large body of respected researchers ¿ both inside and outside of academia ¿ who have published an extensive collection of high-quality investigations over the past few decades. But profound mysteries remain. This volume breaks new ground by resolving some of remote-viewing¿s greatest enigmas. In these pages, new research and new theories explain why remote viewing works, and why it is scientifically po...
Co-author J.A. Yorke developed an array of tools to help visualize the properties of dynamical systems, while Yorke found it useful to combine these various basic tools into one single package: Dynamics. The program together with this manual provides an introduction to and an overview of fundamental, sophisticated tools and numerical methods together with many simple examples. All numerical methods described in this handbook are implemented in the program, which is capable of, among others: iterating maps and solving differential equations; plotting trajectories; featuring an array of simple commands; printing a created picture in resolution higher than that of the screen. Requires a UNIX workstation running X11 graphics or a PC.
Much of what is known about specific dynamical systems is obtained from numerical experiments. Although the discretization process usually has no significant effect on the results for simple, well-behaved dynamics, acute sensitivity to changes in initial conditions is a hallmark of chaotic behavior. How confident can one be that the numerical dynamics reflects that of the original system? Do numerically calculated trajectories always shadow a true one? What role does numerical analysis play in the study of dynamical systems? And conversely, can advances in dynamical systems provide new insights into numerical algorithms? These and related issues were the focus of the workshop on Chaotic Numerics, held at Deakin University in Geelong, Australia, in July 1993. The contributions to this book are based on lectures presented during the workshop and provide a broad overview of this area of research.
An accessible, practical introduction to the principles of differential equations The field of differential equations is a keystone of scientific knowledge today, with broad applications in mathematics, engineering, physics, and other scientific fields. Encompassing both basic concepts and advanced results, Principles of Differential Equations is the definitive, hands-on introduction professionals and students need in order to gain a strong knowledge base applicable to the many different subfields of differential equations and dynamical systems. Nelson Markley includes essential background from analysis and linear algebra, in a unified approach to ordinary differential equations that undersc...
This volume consists of six articles covering different facets of the mathematical theory of dynamical systems. The topics range from topological foundations through invariant manifolds, decoupling, perturbations and computations to control theory. All contributions are based on a sound mathematical analysis. Some of them provide detailed proofs while others are of a survey character. In any case, emphasis is put on motivation and guiding ideas. Many examples are included.The papers of this volume grew out of a tutorial workshop for graduate students in mathematics held at the University of Augsburg. Each of the contributions is self-contained and provides an in-depth insight into some topic of current interest in the mathematical theory of dynamical systems. The text is suitable for courses and seminars on a graduate student level.
Accuracy and Stability of Numerical Algorithms gives a thorough, up-to-date treatment of the behavior of numerical algorithms in finite precision arithmetic. It combines algorithmic derivations, perturbation theory, and rounding error analysis, all enlivened by historical perspective and informative quotations. This second edition expands and updates the coverage of the first edition (1996) and includes numerous improvements to the original material. Two new chapters treat symmetric indefinite systems and skew-symmetric systems, and nonlinear systems and Newton's method. Twelve new sections include coverage of additional error bounds for Gaussian elimination, rank revealing LU factorizations, weighted and constrained least squares problems, and the fused multiply-add operation found on some modern computer architectures.
Beginning with linear algebra and later expanding into calculus of variations, Advanced Engineering Mathematics provides accessible and comprehensive mathematical preparation for advanced undergraduate and beginning graduate students taking engineering courses. This book offers a review of standard mathematics coursework while effectively integrating science and engineering throughout the text. It explores the use of engineering applications, carefully explains links to engineering practice, and introduces the mathematical tools required for understanding and utilizing software packages. Provides comprehensive coverage of mathematics used by engineering students Combines stimulating examples...