You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Praise for the Second Edition "This book is an excellent introduction to the wide field of boundary value problems."—Journal of Engineering Mathematics "No doubt this textbook will be useful for both students and research workers."—Mathematical Reviews A new edition of the highly-acclaimed guide to boundary value problems, now featuring modern computational methods and approximation theory Green's Functions and Boundary Value Problems, Third Edition continues the tradition of the two prior editions by providing mathematical techniques for the use of differential and integral equations to tackle important problems in applied mathematics, the physical sciences, and engineering. This new ed...
Shape optimization deals with problems where the design or control variable is no longer a vector of parameters or functions but the shape of a geometric domain. They include engineering applications to shape and structural optimization, but also original applications to image segmentation, control theory, stabilization of membranes and plates by boundary variations, etc. Free and moving boundary problems arise in an impressingly wide range of new and challenging applications to change of phase. The class of problems which are amenable to this approach can arise from such diverse disciplines as combustion, biological growth, reactive geological flows in porous media, solidification, fluid dynamics, electrochemical machining, etc. The objective and orginality of this NATO-ASI was to bring together theories and examples from shape optimization, free and moving boundary problems, and materials with microstructure which are fundamental to static and dynamic domain and boundary problems.
This two-volume set will help prepare graduate students to use partial differential equations and integral equations to handle significant problems arising in applied mathematics, engineering, and the physical sciences. Originally published in 1967, this graduate-level introduction is devoted to the mathematics needed for the modern approach to boundary value problems using Green's functions and using eigenvalue expansions. Now a part of SIAM's Classics series, these volumes contain a large number of concrete, interesting examples of boundary value problems for partial differential equations that cover a variety of applications that are still relevant today. For example, there is substantial treatment of the Helmholtz equation and scattering theory--subjects that play a central role in contemporary inverse problems in acoustics and electromagnetic theory.
For more than 30 years, this two-volume set has helped prepare graduate students to use partial differential equations and integral equations to handle significant problems arising in applied mathematics, engineering, and the physical sciences. Originally published in 1967, this graduate-level introduction is devoted to the mathematics needed for the modern approach to boundary value problems using Green's functions and using eigenvalue expansions. Now a part of SIAM's Classics series, these volumes contain a large number of concrete, interesting examples of boundary value problems for partial differential equations that cover a variety of applications that are still relevant today. For example, there is substantial treatment of the Helmholtz equation and scattering theory?subjects that play a central role in contemporary inverse problems in acoustics and electromagnetic theory.
This Research Note presents a collection of papers on emerging applications in free boundary problems. The subjects covered include microgravity, chemical and biological reactions, and electromagnetism and electronics.
Mathematics is playing an ever more important role in the physical and biological sciences, provoking a blurring of boundaries between scienti?c disciplines and a resurgence of interest in the modern as well as the cl- sical techniques of applied mathematics. This renewal of interest, both in research and teaching, has led to the establishment of the series: Texts in Applied Mathematics (TAM). Thedevelopmentofnewcoursesisanaturalconsequenceofahighlevelof excitement on the research frontier as newer techniques, such as numerical and symbolic computer systems, dynamical systems, and chaos, mix with and reinforce the traditional methods of applied mathematics. Thus, the purpose of this textbook series is to meet the current and future needs of these advances and to encourage the teaching of new courses. TAM will publish textbooks suitable for use in advanced undergraduate and beginning graduate courses, and will complement the Applied Ma- ematical Sciences (AMS) series, which will focus on advanced textbooks and research-level monographs.
In recent years, research on acoustic remote sensing of the ocean has evolved considerably, especially in studying complex physical and biological processes in shallow water environments. To review the state of the art, an international workshop was held at Carvoeiro, Portugal, in March 1999, bringing together leading international researchers in the field. In contrast to much of the recent theoretical work, emphasis was placed on the experimental validation of the techniques. This volume, based on presentations at this workshop, summarizes a range of diverse and innovative applications. The invited contributions explore the use of acoustics to measure bottom properties and morphology, as we...
The first of three volumes on partial differential equations, this one introduces basic examples arising in continuum mechanics, electromagnetism, complex analysis and other areas, and develops a number of tools for their solution, in particular Fourier analysis, distribution theory, and Sobolev spaces. These tools are then applied to the treatment of basic problems in linear PDE, including the Laplace equation, heat equation, and wave equation, as well as more general elliptic, parabolic, and hyperbolic equations.The book is targeted at graduate students in mathematics and at professional mathematicians with an interest in partial differential equations, mathematical physics, differential geometry, harmonic analysis, and complex analysis.