You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Presents the latest groundbreaking theoretical foundation to shape optimization in a form accessible to mathematicians, scientists and engineers.
This second edition provides an enhanced exposition of the long-overlooked Hadamard semidifferential calculus, first introduced in the 1920s by mathematicians Jacques Hadamard and Maurice René Fréchet. Hadamard semidifferential calculus is possibly the largest family of nondifferentiable functions that retains all the features of classical differential calculus, including the chain rule, making it a natural framework for initiating a large audience of undergraduates and non-mathematicians into the world of nondifferentiable optimization. Introduction to Optimization and Hadamard Semidifferential Calculus, Second Edition builds upon its prior editions foundations in Hadamard semidifferent...
High-dimensional spatio-temporal partial differential equations are a major challenge to scientific computing of the future. Up to now deemed prohibitive, they have recently become manageable by combining recent developments in numerical techniques, appropriate computer implementations, and the use of computers with parallel and even massively parallel architectures. This opens new perspectives in many fields of applications. Kinetic plasma physics equations, the many body Schrodinger equation, Dirac and Maxwell equations for molecular electronic structures and nuclear dynamic computations, options pricing equations in mathematical finance, as well as Fokker-Planck and fluid dynamics equatio...
A self-contained undergraduate-level course in optimization with semidifferential calculus, complete with numerous examples and exercises.
This book brings together tools that have been developed in a priori distant areas of mathematics, mechanics and physics. It provides coverage of selected contemporary problems in the areas of optimal design, mathematical models in material sciences, hysteresis, superconductivity, phase transition, crystal growth, moving boundary problems, thin shells and some of the associated numerical issues.
This considerably enriched new edition provides a self-contained presentation of the mathematical foundations, constructions, and tools necessary for studying problems where the modeling, optimization, or control variable is the shape or the structure of a geometric object.
Contains contributions originating from the 'Conference on Optimal Control of Coupled Systems of Partial Differential Equations', held at the 'Mathematisches Forschungsinstitut Oberwolfach' in March 2008. This work covers a range of topics such as controllability, optimality systems, model-reduction techniques, and fluid-structure interactions.
The application of PDE-based control theory and the corresponding numerical algorithms to industrial problems have become increasingly important in recent years. This volume offers a wide spectrum of aspects of the discipline, and is of interest to mathematicians and scientists working in the field.
Many things around us have properties that depend on their shape--for example, the drag characteristics of a rigid body in a flow. This self-contained overview of differential geometry explains how to differentiate a function (in the calculus sense) with respect to a "shape variable." This approach, which is useful for understanding mathematical models containing geometric partial differential equations (PDEs), allows readers to obtain formulas for geometric quantities (such as curvature) that are clearer than those usually offered in differential geometry texts. Readers will learn how to compute sensitivities with respect to geometry by developing basic calculus tools on surfaces and combining them with the calculus of variations. Several applications that utilize shape derivatives and many illustrations that help build intuition are included.
Time delays are important components of many systems in, for instance, engineering, physics, economics, and the life sciences, because the transfer of material, energy, and information is usually not instantaneous. Time delays may appear as computation and communication lags, they model transport phenomena and heredity, and they arise as feedback delays in control loops. This monograph addresses the problem of stability analysis, stabilization, and robust fixed-order control of dynamical systems subject to delays, including both retarded- and neutral-type systems. Within the eigenvalue-based framework, an overall solution is given to the stability analysis, stabilization, and robust control ...