You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book provides a self-contained overview of the role of conformal groups in geometry and mathematical physics. It features a careful development of the material, from the basics of Clifford algebras to more advanced topics. Each chapter covers a specific aspect of conformal groups and conformal spin geometry. All major concepts are introduced and followed by detailed descriptions and definitions, and a comprehensive bibliography and index round out the work. Rich in exercises that are accompanied by full proofs and many hints, the book will be ideal as a course text or self-study volume for senior undergraduates and graduate students.
This book aims to provide an overview of several topics in advanced differential geometry and Lie group theory, all of them stemming from mathematical problems in supersymmetric physical theories. It presents a mathematical illustration of the main development in geometry and symmetry theory that occurred under the fertilizing influence of supersymmetry/supergravity. The contents are mainly of mathematical nature, but each topic is introduced by historical information and enriched with motivations from high energy physics, which help the reader in getting a deeper comprehension of the subject.
This volume is the collection of papers dedicated to Yozo Matsushima on his 60th birthday, which took place on February 11, 1980. A conference in Geometry in honor of Professor Matsushima was held at the University of Notre Dame on May 14 and 15, 1980. Some of the papers in this volume were delivered on this occasion. 0 00 0\ - 15 S. Kobayashi, University 27 R. Ogawa, Loyola 42 P. Ryan, Indiana 1 W. Stoll 2 W. Kaup, University of of California at Berkeley University (Chicago) University at South Bend Tubing en 16 B.Y. Chen, 28 A. Howard 43 M. Kuga, SUNY at 3 G. Shimura, Michigan State University 29 D. Blair, Stony Brook Princeton University 17 G. Ludden, Michigan State University 44 W. Higgi...
This volume is based on lectures given at the highly successful three-week Summer School on Geometry, Topology and Dynamics of Character Varieties held at the National University of Singapore's Institute for Mathematical Sciences in July 2010.Aimed at graduate students in the early stages of research, the edited and refereed articles comprise an excellent introduction to the subject of the program, much of which is otherwise available only in specialized texts. Topics include hyperbolic structures on surfaces and their degenerations, applications of ping-pong lemmas in various contexts, introductions to Lorenzian and complex hyperbolic geometry, and representation varieties of surface groups into PSL(2, ℝ) and other semi-simple Lie groups. This volume will serve as a useful portal to students and researchers in a vibrant and multi-faceted area of mathematics.
Intended for researchers in Riemann surfaces, this volume summarizes a significant portion of the work done in the field during the years 1966 to 1971.
Contains sections on Non compact complex manifolds, Differential geometry and complex analysis, Problems in approximation, Value distribution theory, Group representation and harmonic analysis, and Survey papers.
This book offers a modern exposition of the arithmetical properties of local fields using explicit and constructive tools and methods. It has been ten years since the publication of the first edition, and, according to Mathematical Reviews, 1,000 papers on local fields have been published during that period. This edition incorporates improvements to the first edition, with 60 additional pages reflecting several aspects of the developments in local number theory. The volume consists of four parts: elementary properties of local fields, class field theory for various types of local fields and generalizations, explicit formulas for the Hilbert pairing, and Milnor -groups of fields and of local ...
Contains sections on Singularities of analytic spaces, Function theory and real analysis, Compact complex manifolds, and Survey papers.
This volume presents a collection of papers on geometric structures in the context of Hurwitz-type structures and applications to surface physics. The first part of this volume concentrates on the analysis of geometric structures. Topics covered are: Clifford structures, Hurwitz pair structures, Riemannian or Hermitian manifolds, Dirac and Breit operators, Penrose-type and Kaluza--Klein-type structures. The second part contains a study of surface physics structures, in particular boundary conditions, broken symmetry and surface decorations, as well as nonlinear solutions and dynamical properties: a near surface region. For mathematicians and mathematical physicists interested in the applications of mathematical structures.
This book presents the results of Cleverbio, a project funded by the European Commission. The project examined the process of growth and development of clusters in the biotech industry, identifying and studying the main driving forces. The empirical work involved in-depth analysis of five clusters at different stages of development: Cambridge, the most important cluster in Europe; Heidelberg, one of the strongest in Germany; Aarhus in Denmark; Marseille in France; and Milano in Italy at an early stage of development. Other clusters were also analysed, such as Paris-Evry (France), Uppsala (Sweden), Biovalley (Switzerland), Bay Area and San Diego (US).The ultimate aim of Cleverbio has been to ...