Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Data Cleaning
  • Language: en
  • Pages: 284

Data Cleaning

This is an overview of the end-to-end data cleaning process. Data quality is one of the most important problems in data management, since dirty data often leads to inaccurate data analytics results and incorrect business decisions. Poor data across businesses and the U.S. government are reported to cost trillions of dollars a year. Multiple surveys show that dirty data is the most common barrier faced by data scientists. Not surprisingly, developing effective and efficient data cleaning solutions is challenging and is rife with deep theoretical and engineering problems. This book is about data cleaning, which is used to refer to all kinds of tasks and activities to detect and repair errors i...

Efficient Optimization and Processing of Queries Over Text-rich Graph-structured Data
  • Language: en
  • Pages: 254

Efficient Optimization and Processing of Queries Over Text-rich Graph-structured Data

Many databases today capture both, structured and unstructured data. Making use of such hybrid data has become an important topic in research and industry. The efficient evaluation of hybrid data queries is the main topic of this thesis. Novel techniques are proposed that improve the whole processing pipeline, from indexes and query optimization to run-time processing. The contributions are evaluated in extensive experiments showing that the proposed techniques improve upon the state of the art.

Principles of Data Integration
  • Language: en
  • Pages: 522

Principles of Data Integration

  • Type: Book
  • -
  • Published: 2012-06-25
  • -
  • Publisher: Elsevier

How do you approach answering queries when your data is stored in multiple databases that were designed independently by different people? This is first comprehensive book on data integration and is written by three of the most respected experts in the field. This book provides an extensive introduction to the theory and concepts underlying today's data integration techniques, with detailed, instruction for their application using concrete examples throughout to explain the concepts. Data integration is the problem of answering queries that span multiple data sources (e.g., databases, web pages). Data integration problems surface in multiple contexts, including enterprise information integration, query processing on the Web, coordination between government agencies and collaboration between scientists. In some cases, data integration is the key bottleneck to making progress in a field. The authors provide a working knowledge of data integration concepts and techniques, giving you the tools you need to develop a complete and concise package of algorithms and applications.

Probabilistic Ranking Techniques in Relational Databases
  • Language: en
  • Pages: 71

Probabilistic Ranking Techniques in Relational Databases

Ranking queries are widely used in data exploration, data analysis and decision making scenarios. While most of the currently proposed ranking techniques focus on deterministic data, several emerging applications involve data that are imprecise or uncertain. Ranking uncertain data raises new challenges in query semantics and processing, making conventional methods inapplicable. Furthermore, the interplay between ranking and uncertainty models introduces new dimensions for ordering query results that do not exist in the traditional settings. This lecture describes new formulations and processing techniques for ranking queries on uncertain data. The formulations are based on marriage of tradit...

Foundations of Fuzzy Logic and Soft Computing
  • Language: en
  • Pages: 836

Foundations of Fuzzy Logic and Soft Computing

This book comprises a selection of papers from IFSA 2007 on new methods and theories that contribute to the foundations of fuzzy logic and soft computing. Coverage includes the application of fuzzy logic and soft computing in flexible querying, philosophical and human-scientific aspects of soft computing, search engine and information processing and retrieval, as well as intelligent agents and knowledge ant colony.

Data Profiling
  • Language: en
  • Pages: 136

Data Profiling

Data profiling refers to the activity of collecting data about data, {i.e.}, metadata. Most IT professionals and researchers who work with data have engaged in data profiling, at least informally, to understand and explore an unfamiliar dataset or to determine whether a new dataset is appropriate for a particular task at hand. Data profiling results are also important in a variety of other situations, including query optimization, data integration, and data cleaning. Simple metadata are statistics, such as the number of rows and columns, schema and datatype information, the number of distinct values, statistical value distributions, and the number of null or empty values in each column. More...

Probabilistic Databases
  • Language: en
  • Pages: 164

Probabilistic Databases

Probabilistic databases are databases where the value of some attributes or the presence of some records are uncertain and known only with some probability. Applications in many areas such as information extraction, RFID and scientific data management, data cleaning, data integration, and financial risk assessment produce large volumes of uncertain data, which are best modeled and processed by a probabilistic database. This book presents the state of the art in representation formalisms and query processing techniques for probabilistic data. It starts by discussing the basic principles for representing large probabilistic databases, by decomposing them into tuple-independent tables, block-in...

Machine Learning for Predictive Analysis
  • Language: en
  • Pages: 627

Machine Learning for Predictive Analysis

This book gathers papers addressing state-of-the-art research in the areas of machine learning and predictive analysis, presented virtually at the Fourth International Conference on Information and Communication Technology for Intelligent Systems (ICTIS 2020), India. It covers topics such as intelligent agent and multi-agent systems in various domains, machine learning, intelligent information retrieval and business intelligence, intelligent information system development using design science principles, intelligent web mining and knowledge discovery systems.

Data Management in the Cloud
  • Language: en
  • Pages: 120

Data Management in the Cloud

Cloud computing has emerged as a successful paradigm of service-oriented computing and has revolutionized the way computing infrastructure is used. This success has seen a proliferation in the number of applications that are being deployed in various cloud platforms. There has also been an increase in the scale of the data generated as well as consumed by such applications. Scalable database management systems form a critical part of the cloud infrastructure. The attempt to address the challenges posed by the management of big data has led to a plethora of systems. This book aims to clarify some of the important concepts in the design space of scalable data management in cloud computing infr...

P2P Techniques for Decentralized Applications
  • Language: en
  • Pages: 90

P2P Techniques for Decentralized Applications

As an alternative to traditional client-server systems, Peer-to-Peer (P2P) systems provide major advantages in terms of scalability, autonomy and dynamic behavior of peers, and decentralization of control. Thus, they are well suited for large-scale data sharing in distributed environments. Most of the existing P2P approaches for data sharing rely on either structured networks (e.g., DHTs) for efficient indexing, or unstructured networks for ease of deployment, or some combination. However, these approaches have some limitations, such as lack of freedom for data placement in DHTs, and high latency and high network traffic in unstructured networks. To address these limitations, gossip protocols which are easy to deploy and scale well, can be exploited. In this book, we will give an overview of these different P2P techniques and architectures, discuss their trade-offs, and illustrate their use for decentralizing several large-scale data sharing applications. Table of Contents: P2P Overlays, Query Routing, and Gossiping / Content Distribution in P2P Systems / Recommendation Systems / Top-k Query Processing in P2P Systems