You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Time and matter are the most fundamental concepts in physics and in any science-based description of the world around us. Quantum theory has, however, revealed many novel insights into these concepts in non-relativistic, relativistic and cosmological contexts. The implications of these novel perspectives have been realized and, in particular, probed experimentally only recently.In the papers in this proceedings, these issues are discussed in a truly interdisciplinary fashion from philosophical and historical perspectives. The leading contributors, including Nobel laureates T W Hänsch and G t' Hooft, address both experimental and theoretical issues.
This book focuses on the basics of particle physics, while covering as many frontier advances as possible.The book introduces readers to the principle of symmetry, properties and classification of particles, the quark model of hadrons and the interactions of particles. Following which, the book offers a step-by-step presentation on the unified theory of electromagnetic and weak interaction, as well as the gauge theory of strong interaction: quantum chromodynamics (QCD).In sequential order of the book's development, readers will study topics on the deep inelastic scattering and parton model, the mixing of electrically neutral particle and anti-particles of neutral K meson, neutral B meson and...
Elementary particle physics is a mature subject, with a wide variety of topics. Size considerations require any text to make choices in the subject matter, and such choices are to a large extent a matter of taste. Each topic in this text has been selected for its accessibility to as wide an audience of interested readers as possible, without any compromise in mathematical sophistication. There are of necessity a lot of formulas, but every one is derived, and an effort has been made to explain the various steps and clever tricks, and how to avoid pitfalls. The text is supplemented by exercises at the end of each chapter. The reader is urged to do the exercises that are designed to increase one's skills in the material. The goal of the book is to bring to undergraduates an ability to enjoy this interesting subject.
Why didn't the matter in our Universe annihilate with antimatter immediately after its creation? The study of CP violation may help to answer this fundamental question. This book presents theoretical tools necessary to understand this phenomenon. Reflecting the explosion of new results over the last decade, this second edition has been substantially expanded. It introduces charge conjugation, parity and time reversal, before describing the Kobayashi-Maskawa (KM) theory for CP violation and our understanding of CP violation in kaon decays. It reveals how the discovery of B mesons has provided a new laboratory to study CP violation with KM theory predicting large asymmetries, and discusses how these predictions have been confirmed since the first edition of this book. Later chapters describe the search for a new theory of nature's fundamental dynamics. This book is suitable for researchers in high energy, atomic and nuclear physics, and the history and philosophy of science.
Time and matter are the most fundamental concepts in physics and in any science-based description of the world around us. Quantum theory has, however, revealed many novel insights into these concepts in non-relativistic, relativistic and cosmological contexts. The implications of these novel perspectives have been realized and, in particular, probed experimentally only recently. In the papers in this proceedings, these issues are discussed in a truly interdisciplinary fashion from philosophical and historical perspectives. The leading contributors, including Nobel laureates T W H'nsch and G t' Hooft, address both experimental and theoretical issues.
CP violation was first observed in 1964, but only in 1999 did we gain much greater experimental insight. Direct CP violation finally appeared in the form of ε′/ε in the K system. Indirect CP violation in B → J/Ψ Ks decay, the raison d'être for construction of e+e- B factories, was first sniffed out at the proton-antiproton collider. The asymmetric B factories — BABAR at SLAC and BELLE at KEK — were completed, while the symmetric B factory at Cornell was upgraded to CLEO-III. It seems that everyone is positioning himself for the great competition on “B Physics and CP Violation”, racing to unravel the Kobayashi-Maskawa matrix, especially the size and origin of CP phases. The ch...
Time and matter are the most fundamental concepts in physics and in any science-based description of the world around us. Quantum theory has, however, revealed many novel insights into these concepts in non-relativistic, relativistic and cosmological contexts. The implications of these novel perspectives have been realized and, in particular, probed experimentally only recently. In the papers in this proceedings, these issues are discussed in a truly interdisciplinary fashion from philosophical and historical perspectives. The leading contributors, including Nobel laureates T W Hnnsch and G t'' Hooft, address both experimental and theoretical issues. Sample Chapter(s). Chapter 1: The Measurement to Time with Atomic Clocks (742 KB). Contents: Measuring Time; Causality and Signal Propagation; Coherence and Decoherence; CP and T Violation; Macroscopic Time Reversal and the Arrow of Time; New Paradigms. Readership: Physicists, philosophers and historians of science, graduate students of physics."
The lectures collected in this book present a comprehensive review of the current knowledge of heavy-quark physics, from the points of view of both theory and experiment. Heavy Flavour Physics has accomplished enormous progress during the last few years: the last heavy quark has been discovered and the quality of the collected data on the other relatively lighter quarks has dramatically improved. On the theory side, noticeable progress has been reported on new calculations of decay rates based on various techniques, such as QCD sum rules, heavy-quark mass expansion and lattice QCD. The theory of heavy quark production is constantly improving and awaiting new results. Nevertheless there are s...