You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book gathers contributions on a variety of flowing collective systems. While primarily focusing on pedestrian dynamics, they also reflect the latest developments in areas such as vehicular traffic and granular flows and address related emerging topics such as self-propelled particles, data transport, swarm behavior, intercellular transport, and collective dynamics of biological systems. Combining fundamental research and practical applications in the various fields discussed, the book offers a valuable asset for researchers and practitioners alike.
Full of drama, dedication, and humor, this book narrates the author’s often frustrating experiences working as an experimental physicist in Cuba after the disintegration of the so-called socialist block. Lacking finance and infrastructure, faced with makeshift equipment, unpredictable supplies, and unreliable IT, Altshuler tells how he and his students overcame numerous challenges to make novel and interesting contributions to several fields of science. Along the way, he explains the science - from studies of ant colonies to superconductivity - either qualitatively or quantitatively, but always at a level fully understandable to an undergraduate student of natural sciences or engineering. An even wider audience, however, may skip the technical sections without missing the essence. With numerous anecdotes, photographs and the author’s own delightful cartoons, the book tells a remarkable, and often amusing story of how successful science can be performed against all odds.
Covers several research fields dealing with transport. This work covers three main topics including road traffic, granular matter, and biological transport. It considers different points of views including modelling, simulations, experiments, and phenomenological observations.
The Conference on Traffic and Granular Flow brings together international researchers from different fields ranging from physics to computer science and engineering to discuss the latest developments in traffic-related systems. Originally conceived to facilitate new ideas by considering the similarities of traffic and granular flow, TGF'15, organised by Delft University of Technology, now covers a broad range of topics related to driven particle and transport systems. Besides the classical topics of granular flow and highway traffic, its scope includes data transport (Internet traffic), pedestrian and evacuation dynamics, intercellular transport, swarm behaviour and the collective dynamics of other biological systems. Recent advances in modelling, computer simulation and phenomenology are presented, and prospects for applications, for example to traffic control, are discussed. The conference explores the interrelations between the above-mentioned fields and offers the opportunity to stimulate interdisciplinary research, exchange ideas, and meet many experts in these areas of research.
This book introduces readers to gas flows and heat transfer in pebble bed reactor cores. It addresses fundamental issues regarding experimental and modeling methods for complex multiphase systems, as well as relevant applications and recent research advances. The numerical methods and experimental measurements/techniques used to solve pebble flows, as well as the content on radiation modeling for high-temperature pebble beds, will be of particular interest. This book is intended for a broad readership, including researchers and practitioners, and is sure to become a key reference resource for students and professionals alike.
This book will guide you in a simple and illustrative way through all aspects related to crowd behaviour, including sociological theories, methods of crowd control, people detection and tracking, and crowd simulation and prediction, while examining previous accidents to learn from the past. Crowds are a constant presence in most cities around the globe and mass gatherings are attracting an increasing number of people. While experience can help manage large crowds and plan mass events, knowledge on crowd behaviour is fundamental for successfully dealing with unexpected situations, improving current practices and implementing state-of-the-art technologies in management strategies. After lettin...
This book presents 57 peer-reviewed papers from the 12th Conference on Traffic and Granular Flow (TGF) held in Washington, DC, in July 2017. It offers a unique synthesis of the latest scientific findings made by researchers from different countries, institutions and disciplines. The research fields covered range from physics, computer science and engineering and they may be all grouped under the topic of "Traffic and Granular Flow". The main theme of the Conference was: "From Molecular Interactions to Internet of Things and Smart Cities: The Role of Technology in the Understanding and the Evolution of Particle Dynamics".
Forecasting the future with advanced data models and visualizations. To envision and create the futures we want, society needs an appropriate understanding of the likely impact of alternative actions. Data models and visualizations offer a way to understand and intelligently manage complex, interlinked systems in science and technology, education, and policymaking. Atlas of Forecasts, from the creator of Atlas of Science and Atlas of Knowledge, shows how we can use data to predict, communicate, and ultimately attain desirable futures. Using advanced data visualizations to introduce different types of computational models, Atlas of Forecasts demonstrates how models can inform effective decision-making in education, science, technology, and policymaking. The models and maps presented aim to help anyone understand key processes and outcomes of complex systems dynamics, including which human skills are needed in an artificial intelligence-empowered economy; what progress in science and technology is likely to be made; and how policymakers can future-proof regions or nations. This Atlas offers a driver's seat-perspective for a test-drive of the future.
Segregation in Vibrated Granular Systems explains the individual mechanisms that influence the segregation of granular media under vibration, along with their interactions. Drawing on research from a wide range of academic disciplines, the book focuses on vibrated granular systems that are used in industry, providing a guide that will solve practical problems and help researchers. The applications of vibration-based segregation in industries, including pharmaceuticals, mining, food and chemical processing are all investigated with appropriate examples. In addition, relevant theory behind the behavior of granular media and segregation processes is explained, along with investigations of the technologies and techniques used. - Analyzes all phenomena involved in the vibration-based segregation of bulk solids, including those relating to size, material properties and shape - Explores how different segregation mechanisms interact - Compares different technologies for investigating granular media, including PIV, MRI and X-ray tomography - Explains how to use computational techniques to model the behavior of granular media, including DM, CFD and FEM