You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume can be divided into two parts: a purely mathematical part with contributions on finance mathematics, interactions between geometry and physics and different areas of mathematics; another part on the popularization of mathematics and the situation of women in mathematics.
This volume can be divided into two parts: a purely mathematical part with contributions on finance mathematics, interactions between geometry and physics and different areas of mathematics; another part on the popularization of mathematics and the situation of women in mathematics.
``Regularization techniques'' is the common name for a variety of methods used to make sense of divergent series, divergent integrals, or traces of linear operators in infinite-dimensional spaces. Such methods are often indispensable in problems of number theory, geometry, quantum field theory, and other areas of mathematics and theoretical physics. However arbitrary and noncanonical they might seem at first glance, regularized sums, integrals, and traces often contain canonical concepts, and the main purpose of this book is to illustrate and explain this. This book provides a unified and self-contained mathematical treatment of various regularization techniques. The author shows how to deri...
This volume outlines the proceedings of the conference on "Quadratic Forms and Their Applications" held at University College Dublin. It includes survey articles and research papers ranging from applications in topology and geometry to the algebraic theory of quadratic forms and its history. Various aspects of the use of quadratic forms in algebra, analysis, topology, geometry, and number theory are addressed. Special features include the first published proof of the Conway-Schneeberger Fifteen Theorem on integer-valued quadratic forms and the first English-language biography of Ernst Witt, founder of the theory of quadratic forms.
The book contains the round table reports of the first European Congress of Mathematics, a new feature of this Congress devoted to furthering the contribution of mathematics to society and reporting on its interaction with the exact and social sciences. Topics: • Mathematics and the general public • Women and mathematics • Mathematics and educational policy • Let's cultivate mathematics! • Mathematical Europe: Myth or historical reality? • Philosophie des mathématiques : pourquoi ? comment ? • Mathématiques et sciences sociales • Mathe- matics and industry • Degree harmonization and student exchange programmes • The Pythagoras programme • Collaboration with devel- opi...
As tech giants and startups disrupt every market, those who master large-scale software delivery will define the economic landscape of the 21st century, just as the masters of mass production defined the landscape in the 20th. Unfortunately, business and technology leaders are woefully ill-equipped to solve the problems posed by digital transformation. At the current rate of disruption, half of S&P 500 companies will be replaced in the next ten years. A new approach is needed. In Project to Product, Value Stream Network pioneer and technology business leader Dr. Mik Kersten introduces the Flow Framework—a new way of seeing, measuring, and managing software delivery. The Flow Framework will enable your company’s evolution from project-oriented dinosaur to product-centric innovator that thrives in the Age of Software. If you’re driving your organization’s transformation at any level, this is the book for you.
In an exciting, fast-paced historical narrative ranging across two centuries, Ronan takes readers on an exhilarating tour of this final mathematical quest to understand symmetry.
For most mathematicians and many mathematical physicists the name Erich Kähler is strongly tied to important geometric notions such as Kähler metrics, Kähler manifolds and Kähler groups. They all go back to a paper of 14 pages written in 1932. This, however, is just a small part of Kähler's many outstanding achievements which cover an unusually wide area: From celestial mechanics he got into complex function theory, differential equations, analytic and complex geometry with differential forms, and then into his main topic, i.e. arithmetic geometry where he constructed a system of notions which is a precursor and, in large parts, equivalent to the now used system of Grothendieck and Dieu...
Gerhard Gentzen (1909–1945) is the founder of modern structural proof theory. His lasting methods, rules, and structures resulted not only in the technical mathematical discipline called “proof theory” but also in verification programs that are essential in computer science. The appearance, clarity, and elegance of Gentzen's work on natural deduction, the sequent calculus, and ordinal proof theory continue to be impressive even today. The present book gives the first comprehensive, detailed, accurate scientific biography expounding the life and work of Gerhard Gentzen, one of our greatest logicians, until his arrest and death in Prague in 1945. Particular emphasis in the book is put on...
Modular forms are tremendously important in various areas of mathematics, from number theory and algebraic geometry to combinatorics and lattices. Their Fourier coefficients, with Ramanujan's tau-function as a typical example, have deep arithmetic significance. Prior to this book, the fastest known algorithms for computing these Fourier coefficients took exponential time, except in some special cases. The case of elliptic curves (Schoof's algorithm) was at the birth of elliptic curve cryptography around 1985. This book gives an algorithm for computing coefficients of modular forms of level one in polynomial time. For example, Ramanujan's tau of a prime number p can be computed in time bounde...