Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Riemann Surfaces
  • Language: en
  • Pages: 348

Riemann Surfaces

The present volume is the culmination often years' work separately and joint ly. The idea of writing this book began with a set of notes for a course given by one of the authors in 1970-1971 at the Hebrew University. The notes were refined serveral times and used as the basic content of courses given sub sequently by each of the authors at the State University of New York at Stony Brook and the Hebrew University. In this book we present the theory of Riemann surfaces and its many dif ferent facets. We begin from the most elementary aspects and try to bring the reader up to the frontier of present-day research. We treat both open and closed surfaces in this book, but our main emphasis is on the compact case. In fact, Chapters III, V, VI, and VII deal exclusively with compact surfaces. Chapters I and II are preparatory, and Chapter IV deals with uniformization. All works on Riemann surfaces go back to the fundamental results of Rie mann, Jacobi, Abel, Weierstrass, etc. Our book is no exception. In addition to our debt to these mathematicians of a previous era, the present work has been influenced by many contemporary mathematicians.

A History in Sum
  • Language: en
  • Pages: 281

A History in Sum

In the twentieth century, American mathematicians began to make critical advances in a field previously dominated by Europeans. Harvard's mathematics department was at the center of these developments. A History in Sum is an inviting account of the pioneers who trailblazed a distinctly American tradition of mathematics--in algebraic geometry, complex analysis, and other esoteric subdisciplines that are rarely written about outside of journal articles or advanced textbooks. The heady mathematical concepts that emerged, and the men and women who shaped them, are described here in lively, accessible prose. The story begins in 1825, when a precocious sixteen-year-old freshman, Benjamin Peirce, a...

Complex Geometry of Groups
  • Language: en
  • Pages: 298

Complex Geometry of Groups

This volume presents the proceedings of the I Iberoamerican Congress on Geometry: Cruz del Sur held in Olmué, Chile. The main topic was "The Geometry of Groups: Curves, Abelian Varieties, Theoretical and Computational Aspects". Participants came from all over the world. The volume gathers the expanded contributions from most of the participants in the Congress. Articles reflect the topic in its diversity and unity, and in particular, the work done on the subject by Iberoamerican mathematicians. Original results and surveys are included on the following areas: curves and Riemann surfaces, abelian varieties, and complex dynamics. The approaches are varied, including Kleinian groups, quasiconformal mappings and Teichmüller spaces, function theory, moduli spaces, automorphism groups,merican algebraic geometry, and more.

Riemann Surfaces and Related Topics
  • Language: en
  • Pages: 536

Riemann Surfaces and Related Topics

Annotation The description for this book, Riemann SurfaceseRelated Topics (AM-97): Proceedings of the 1978 Stony Brook Conference. (AM-97), will be forthcoming.

Theta Constants, Riemann Surfaces and the Modular Group
  • Language: en
  • Pages: 557

Theta Constants, Riemann Surfaces and the Modular Group

There are incredibly rich connections between classical analysis and number theory. For instance, analytic number theory contains many examples of asymptotic expressions derived from estimates for analytic functions, such as in the proof of the Prime Number Theorem. In combinatorial number theory, exact formulas for number-theoretic quantities are derived from relations between analytic functions. Elliptic functions, especially theta functions, are an important class of such functions in this context, which had been made clear already in Jacobi's Fundamenta nova. Theta functions are also classically connected with Riemann surfaces and with the modular group $\Gamma = \mathrm{PSL (2,\mathbb{Z...

Automorphic Forms and Kleinian Groups
  • Language: en
  • Pages: 1048

Automorphic Forms and Kleinian Groups

None

Complex Analysis and Dynamical Systems VII
  • Language: en
  • Pages: 314

Complex Analysis and Dynamical Systems VII

A co-publication of the AMS and Bar-Ilan University This volume contains the proceedings of the Seventh International Conference on Complex Analysis and Dynamical Systems, held from May 10–15, 2015, in Nahariya, Israel. The papers in this volume range over a wide variety of topics in the interaction between various branches of mathematical analysis. Taken together, the articles collected here provide the reader with a panorama of activity in complex analysis, geometry, harmonic analysis, and partial differential equations, drawn by a number of leading figures in the field. They testify to the continued vitality of the interplay between classical and modern analysis.

Extremal Riemann Surfaces
  • Language: en
  • Pages: 258

Extremal Riemann Surfaces

Other papers deal with maximizing or minimizing functions defined by the spectrum such as the heat kernel, the zeta function, and the determinant of the Laplacian, some from the point of view of identifying an extremal metric.

Value Distribution Theory and Related Topics
  • Language: en
  • Pages: 331

Value Distribution Theory and Related Topics

The volume consists of a collection of articles on the value distribution theory and its applications, both in one and several variables. The applied parts include problems related to geometric function theory, linear operators of entire functions, differential and functional equations, uniqueness and interpolation. A unique feature of the book is an extensive research program by the first editor on the Gamma-lines approach to analysis. Some aspects in the book consider Diophantine type equations for meromorphic functions, offering new challenges to complex analysis. Audience: Researchers and postgraduate students in complex analysis, differential equations and algebraic geometry would find this book of interest.

Lectures on Quasiconformal Mappings
  • Language: en
  • Pages: 178

Lectures on Quasiconformal Mappings

Lars Ahlfors's Lectures on Quasiconformal Mappings, based on a course he gave at Harvard University in the spring term of 1964, was first published in 1966 and was soon recognized as the classic it was shortly destined to become. These lectures develop the theory of quasiconformal mappings from scratch, give a self-contained treatment of the Beltrami equation, and cover the basic properties of Teichmuller spaces, including the Bers embedding and the Teichmuller curve. It is remarkable how Ahlfors goes straight to the heart of the matter, presenting major results with a minimum set of prerequisites. Many graduate students and other mathematicians have learned the foundations of the theories o...