You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book introduces the main theoretical findings related to copulas and shows how statistical modeling of multivariate continuous distributions using copulas can be carried out in the R statistical environment with the package copula (among others). Copulas are multivariate distribution functions with standard uniform univariate margins. They are increasingly applied to modeling dependence among random variables in fields such as risk management, actuarial science, insurance, finance, engineering, hydrology, climatology, and meteorology, to name a few. In the spirit of the Use R! series, each chapter combines key theoretical definitions or results with illustrations in R. Aimed at statisticians, actuaries, risk managers, engineers and environmental scientists wanting to learn about the theory and practice of copula modeling using R without an overwhelming amount of mathematics, the book can also be used for teaching a course on copula modeling.
Aggregation is the process of combining several numerical values into a single representative value, and an aggregation function performs this operation. These functions arise wherever aggregating information is important: applied and pure mathematics (probability, statistics, decision theory, functional equations), operations research, computer science, and many applied fields (economics and finance, pattern recognition and image processing, data fusion, etc.). This is a comprehensive, rigorous and self-contained exposition of aggregation functions. Classes of aggregation functions covered include triangular norms and conorms, copulas, means and averages, and those based on nonadditive integrals. The properties of each method, as well as their interpretation and analysis, are studied in depth, together with construction methods and practical identification methods. Special attention is given to the nature of scales on which values to be aggregated are defined (ordinal, interval, ratio, bipolar). It is an ideal introduction for graduate students and a unique resource for researchers.
This book constitutes the refereed proceedings of the First International Conference on Modeling Decisions for Artificial Intelligence, MDAI 2004, held in Barcelona, Spain in August 2004. The 26 revised full papers presented together with 4 invited papers were carefully reviewed and selected from 53 submissions. The papers are devoted to topics like models for information fusion, aggregation operators, model selection, fuzzy integrals, fuzzy sets, fuzzy multisets, neural learning, rule-based classification systems, fuzzy association rules, algorithmic learning, diagnosis, text categorization, unsupervised aggregation, the Choquet integral, group decision making, preference relations, vague knowledge processing, etc.
This book offers an original and broad exploration of the fundamental methods in Clustering and Combinatorial Data Analysis, presenting new formulations and ideas within this very active field. With extensive introductions, formal and mathematical developments and real case studies, this book provides readers with a deeper understanding of the mutual relationships between these methods, which are clearly expressed with respect to three facets: logical, combinatorial and statistical. Using relational mathematical representation, all types of data structures can be handled in precise and unified ways which the author highlights in three stages: Clustering a set of descriptive attributes Clustering a set of objects or a set of object categories Establishing correspondence between these two dual clusterings Tools for interpreting the reasons of a given cluster or clustering are also included. Foundations and Methods in Combinatorial and Statistical Data Analysis and Clustering will be a valuable resource for students and researchers who are interested in the areas of Data Analysis, Clustering, Data Mining and Knowledge Discovery.
At present, computational methods have received considerable attention in economics and finance as an alternative to conventional analytical and numerical paradigms. This Special Issue brings together both theoretical and application-oriented contributions, with a focus on the use of computational techniques in finance and economics. Examined topics span on issues at the center of the literature debate, with an eye not only on technical and theoretical aspects but also very practical cases.
This volume contains papers presented at the 7th International Conference on Modeling Decisions for Arti?cial Intelligence (MDAI 2010), held in Perpignan, France, October 27–29. This conference followed MDAI 2004 (Barcelona, C- alonia, Spain), MDAI 2005 (Tsukuba, Japan), MDAI 2006 (Tarragona, Cata- nia, Spain), MDAI 2007 (Kitakyushu, Japan), MDAI 2008 (Sabadell, Catalonia, Spain), and MDAI 2009 (Awaji Island, Japan) with proceedings also published in the LNAI series (Vols. 3131, 3558, 3885, 4617, 5285, and 5861). The aim of this conference was to provide a forum for researchers to discuss theory and tools for modeling decisions, as well as applications that encompass decision-making proces...
This book constitutes the major results of the EU COST (European Cooperation in the field of Scientific and Technical Research) Action 274: TARSKI - Theory and Applications of Relational Structures as Knowledge Instruments - running from July 2002 to June 2005. The papers are devoted to further understanding of interdisciplinary issues involving relational reasoning by addressing relational structures and the use of relational methods in applicable object domains.
This book constitutes the refereed proceedings of the 9th International Conference on Modeling Decisions for Artificial Intelligence, MDAI 2012, held in Girona, Catalonia, Spain, in November 2012. The 32 revised full papers were carefully reviewed and selected from 49 submissions and are presented with 4 plenary talks. The papers are organized in topical sections on aggregation operators, integrals, data privacy and security, reasoning, applications, and clustering and similarity.
Copulas are mathematical objects that fully capture the dependence structure among random variables and hence offer great flexibility in building multivariate stochastic models. Since their introduction in the early 1950s, copulas have gained considerable popularity in several fields of applied mathematics, especially finance and insurance. Today, copulas represent a well-recognized tool for market and credit models, aggregation of risks, and portfolio selection. Historically, the Gaussian copula model has been one of the most common models in credit risk. However, the recent financial crisis has underlined its limitations and drawbacks. In fact, despite their simplicity, Gaussian copula mod...
The Second International Conference on Fuzzy Information and Engineering (ICFIE2007) is a major symposium for scientists, engineers and practitioners in China as well as the world to present their latest results, ideas, developments and applications in all areas of fuzzy information and knowledge engineering. It aims to strengthen relations between industry research laboratories and universities, and to create a primary symposium for world scientists.