You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
A synthesis of the novel aspects of polysiloxane science and engineering.
Rubber elasticity is an important sub-field of polymer science. This book is in many ways a sequel to the authors' previous, more introductory book, Rubberlike Elasticity: A Molecular Primer (Wiley-Interscience, 1988), and will in some respects replace the now classic book by L.R.G. Treloar, The Physics of Rubber Elasticity (Oxford, 1975). The present book has much in common with its predecessor, in particular its strong emphasis on molecular concepts and theories. Similarly, only equilibrium properties are covered in any detail. Though this book treats much of the same subject matter, it is a more comprehensive, more up-to-date, and somewhat more sophisticated treatment.
This book reports on origin and history of polycondensation chemistry beginning in the first half of the 19th century. Furthermore, history and inventors of the most important polycondensates, such as Nylons, PET or polycarbonates, are described. The classical theory of step-growth polymerizations is discussed in the light of the latest experimental and theoretical results. Particular emphasis is laid on the role of cyclization reactions. Special categories of polycondensation processes are discussed in more detail: syntheses of hyperbranched and multicyclic polymers, non-stoichiometric polycondensations, interfacial polycondensations, solid state polycondensations, condensative chain polymerizations etc.
This book offers concise information on the properties of polymeric materials, particularly those most relevant to physical chemistry and chemical physics. Extensive updates and revisions to each chapter include eleven new chapters on novel polymeric structures, reinforcing phases in polymers, and experiments on single polymer chains. The study of complex materials is highly interdisciplinary, and new findings are scattered among a large selection of scientific and engineering journals. This book brings together data from experts in the different disciplines contributing to the rapidly growing area of polymers and complex materials.
The Palgrave Handbook of Power, Gender, and Psychology takes an intersectional feminist approach to the exploration of psychology and gender through a lens of power. The invisibility of power in psychological research and theorizing has been critiqued by scholars from many perspectives both within and outside the discipline. This volume addresses that gap. The handbook centers power in the analysis of gender, but does so specifically in relation to psychological theory, research, and praxis. Gathering the work of sixty authors from different geographies, career stages, psychological sub-disciplines, methodologies, and experiences, the handbook showcases creativity in approach, and diversity of perspective. The result is a work featuring a chorus of different voices, including diverse understandings of feminisms and power. Ultimately, the handbook presents a case for the importance of intersectionality and power for any feminist psychological endeavor.
It is generally accepted that a new material is often developed by ?nding a new synthesis method of reaction or a new reaction catalyst. Historically, a typical example may be referred to as a Ziegler–Natta catalyst, which has allowed large-scale production of petroleum-based polyole?ns since the middle of the 20th century. New polymer synthesis, therefore, will hopefully lead to creation of new polymer materials in the 21st century. This special issue contributed by three groups focuses on recent advances in polymer synthesis methods, which handle the cutting-edge aspects of the advanced technology. The ?rst article by Yokozawa and coworkers contains an overview of the - action control in...
The series Topics in Current Chemistry presents critical reviews of the present and future trends in modern chemical research. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years ...
Silicon in Polymer Synthesis gives the first concise overview of silicon used for the synthesis and modification of polymers. The first section gives an introduction to the topic. The subsequent chapters detail the current status both from the basic research as well as from the industrial application points of view.
The progress in polymer science is revealed in the chapters of Polymer Science: A Comprehensive Reference, Ten Volume Set. In Volume 1, this is reflected in the improved understanding of the properties of polymers in solution, in bulk and in confined situations such as in thin films. Volume 2 addresses new characterization techniques, such as high resolution optical microscopy, scanning probe microscopy and other procedures for surface and interface characterization. Volume 3 presents the great progress achieved in precise synthetic polymerization techniques for vinyl monomers to control macromolecular architecture: the development of metallocene and post-metallocene catalysis for olefin pol...