You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Presents views on current developments in heat and mass transfer research related to the modern development of heat exchangers. Devotes special attention to the different modes of heat and mass transfer mechanisms in relation to the new development of heat exchangers design. Dedicates particular attention to the future needs and demands for further development in heat and mass transfer. GaN and related materials are attracting tremendous interest for their applications to high-density optical data storage, blue/green diode lasers and LEDs, high-temperature electronics for high-power microwave applications, electronics for aerospace and automobiles, and stable passivation films for semiconduc...
This five-volume handbook focuses on processing techniques, characterization methods, and physical properties of thin films (thin layers of insulating, conducting, or semiconductor material). The editor has composed five separate, thematic volumes on thin films of metals, semimetals, glasses, ceramics, alloys, organics, diamonds, graphites, porous materials, noncrystalline solids, supramolecules, polymers, copolymers, biopolymers, composites, blends, activated carbons, intermetallics, chalcogenides, dyes, pigments, nanostructured materials, biomaterials, inorganic/polymer composites, organoceramics, metallocenes, disordered systems, liquid crystals, quasicrystals, and layered structures.Thin...
The first GaN and Related Materials covered topics such as a historical survey of past research, optical electrical and microstructural characterization, theory of defects, bulk crystal growth, and performance of electronic and photonic devices. This new volume updates old research where warranted and explores new areas such as UV detectors, microwave electronics, and Er-doping. This unique follow-up features contributions from leading experts that cover the full spectrum of growth.
The proceedings were published before the two symposia actually took place, and some of the papers presented were not received in time. The 21 that did make it discuss compound semiconductors from perspectives of recent developments in materials, growth, characterization, processing, device fabrication, and reliability. Among the specific topics are the non-crystallographic wet etching of gallium arsenide, fabricating an integrated optics One to Two optical switch, and the fabrication and materials characterization of pulsed laser deposited nickel silicide ohmic contacts to 4H n-SiC. Annotation copyrighted by Book News, Inc., Portland, OR
Since its inception in 1966, the series of numbered volumes known as Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. The Willardson and Beer series, as it is widely known, has succeeded in producing numerous landmark volumes and chapters. Not only did many of these volumes make an impact at the time of their publication, but they continue to be well-cited years after their original release. Recently, Professor Eicke R. Weber of the University of California at Berkeley joined as a co-editor of the series. Professor Weber, a well-known expert in the field of semiconductor materials, will further contribute to continuing the series' tradition of publishing timely, highly relevant, and long-impacting volumes. Some of the recent volumes, such as Hydrogen in Semiconductors, Imperfections in III/V Materials, Epitaxial Microstructures, High-Speed Heterostructure Devices, Oxygen in Silicon, and others promise that this tradition will be maintained and even expanded.
Since first coming into existence in the early 90s, the vertical-cavity surface-emitting laser (VCSEL) has made several quantum leaps in performance. The performance of VCSELs now exceeds that of edge-emitting lasers in many respects, and offers a superior optical beam and much easier monolithic integrability. As the VCSEL technology improves further, and their number and variety multiply, their potential applications will likely expand at a rapid pace. Vertical-cavity Surface-Emitting Lasers: Technology and Applications addresses two main objectives. It provides the researcher and device engineer with a reference guide to understanding the physical principles as well as the practical design concepts of VCSELs. Furthermore, it provides the system designer or application engineer with a review of the properties of VCSELs, and an overview of some of the applications in which the VCSEL has already played an important role. This book features contributions from prominent researchers in the field.
Research advances in III-nitride semiconductor materials and device have led to an exponential increase in activity directed towards electronic and optoelectronic applications. There is also great scientific interest in this class of materials because they appear to form the first semiconductor system in which extended defects do not severely affect the optical properties of devices. The volume consists of chapters written by a number of leading researchers in nitride materials and device technology with the emphasis on the dopants incorporations, impurities identifications, defects engineering, defects characterization, ion implantation, irradiation-induced defects, residual stress, structu...