You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This important and timely book deals with the theoretical and experimental investigation of the phase transitions which occur in complex fluid systems, namely lyotropic systems, microemulsions, colloids, gels, polymers, biological membranes, Langmuir monolayers, and ferrofluids. It contains 20-odd review papers from the major contributors to this rapidly growing field of research, summarizing the main results obtained in the description and understanding of the phase transitions taking place between the isotopic, nematic, cholesteric, lamellar, hexagonal, and cubic mesophases of complex fluids.
Offers an introduction to the topics in interfacial phenomena, colloid science or nanoscience. Designed as a pedagogical tool, this book recognizes the cross-disciplinary nature of the subject. It features descriptions of experiments and contains figures and illustrations that enhance the understanding of concepts.
This volume comprises the proceedings of a NATO Advanced Study Institute held in Geilo, Norway, between 4 - 14 April 1989. This Institute was the tenth in a series held at Geilo on the subject of phase transitions. It was the first to be concerned with the growing area of soft condensed matter, which is neither ordinary solids nor ordinary liquids, but somewhere in between. The Institute brought together many lecturers, students and active researchers in the field from a wide range of NATO and some non-NATO countries, with financial support principally from the NATO Scientific Affairs Division but also from Institutt for energiteknikk, the Nor wegian Research Council for Science and the Huma...
The lyotropic state of matter embraces highly concentrated solutions of soaps and detergents, as well as such biologically active substances as lipids, proteins, nucleic acids and lipopolysaccharides. Since some of the most important living lyotropic structures are biological membranes, their study is multidisciplinary, ranging from the molecular physics and physical chemistry of interfaces to living matter physics in general, and membrane biophysics in particular. Written for liquid crystal scientists who are not familiar with lyotropics and membranes, for membranologists who are not familiar with liquid crystal physics, and for experts in these fields, The Lyotropic State of Matter: Molecular Physics and Living Matter Physics presents both theory and experiment, and provides an overview of the state of the art in this exciting area of study.
The first volume of the Handbook deals with the amazing world of biomembranes and lipid bilayers. Part A describes all aspects related to the morphology of these membranes, beginning with the complex architecture of biomembranes, continues with a description of the bizarre morphology of lipid bilayers and concludes with technological applications of these membranes. The first two chapters deal with biomembranes, providing an introduction to the membranes of eucaryotes and a description of the evolution of membranes. The following chapters are concerned with different aspects of lipids including the physical properties of model membranes composed of lipid-protein mixtures, lateralphase separa...
The fact that the surfaces of real solids are geometrically distorted and chemically non-uniform has long been realized by the scientists investigating various phenomena occurring on solid surfaces. Even in the case when diffraction experiments show a well-organized bulk solid structure, the surface atoms or molecules will usually exhibit a much smaller degree of surface organization. In addition to the results obtained from electron diffraction, this can be seen in the impressive images obtained from STM and AFM microscopies. This geometric and chemical disorder is the source of the energetic heterogeneity for molecules adsorbing on real solid surfaces. Hundreds of papers have been publishe...
Liquid crystals are partially ordered systems without a rigid, long-range structure. The study of these materials covers a wide area: chemical structure, physical properties and technical applications. Due to their dual nature -- anisotropic physical properties of solids and rheological behavior of liquids -- and easy response to externally applied electric, magnetic, optical and surface fields liquid crystals are of greatest potential for scientific and technological applications. The subject has come of age and has achieved the status of being a very exciting interdisciplinary field of scientific and industrial research. This book is an outgrowth of the enormous advances made during the last three decades in both our understanding of liquid crystals and our ability to use them in applications. It presents a systematic, self-contained and up-to-date overview of the structure and properties of liquid crystals. It will be of great value to graduates and research workers in condensed matter physics, chemical physics, biology, materials science, chemical and electrical engineering, and technology from a materials science and physics viewpoint of liquid crystals.
This book aims to review the field of lyotropic liquid crystals from amphiphilic to colloidal systems, bridging the gap between the two worlds of lyotropics and thermotropics by showing that many of the features observed in standard thermotropic liquid crystals may also be observed in lyotropic systems and vice versa. Indeed, for a long time, lyotropic liquid crystals have been overshadowed by their thermotropic counterparts, mainly due to the potential for application of the latter in the display industry. This picture has somewhat shifted over the last decade, with numerous novel lyotropic systems having been discovered and formulated, bringing to light their importance in wider scientific...
Advances in Planar Lipid Bilayers and Liposomes volumes cover a broad range of topics, including main arrangements of the reconstituted system, namely planar lipid bilayers as well as spherical liposomes. The invited authors present the latest results of their own research groups in this exciting multidisciplinary field. - Incorporates contributions from newcomers and established and experienced researchers - Explores the planar lipid bilayer systems and spherical liposomes from both theoretical and experimental perspectives - Serves as an indispensable source of information for new scientists
Over the last decades, the study of surfactants (detergents, for example) has been profoundly changed by ideas and techniques from physics, chemistry, and materials science. Among these are: self assembly; critical phenomena, scaling, and renormalization; high-resolution scattering, and magnetic resonance spectroscopy. This book represents the first systematic account of these new developments, providing both a general introduction to the subject as well as a review of recent developments. The book will be a very useful tool for the biophysist, biochemist or physical chemist working in the field of surfactants.