You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The selected works of one the greatest names in algebraic topology.
The selected works of one the greatest names in algebraic topology.
This selection of Adams' work in two volumes brings together all his major research contributions. They are organized by subject matter rather than in strict chronological order. The first volume contains papers on the cobar construction, the Adams spectral sequence, higher order cohomology operations, and the Hopf invariant one problem, applications of K-theory, generalized homology and cohomology theories. The second volume is mainly concerned with Adams' contributions to characteristic classes and calculations in K-theory, modules over the Steenrod algebra and their Ext groups, finite H-spaces and compact Lie groups, and maps between classifying spaces and compact groups.
J. Frank Adams was one of the world's leading topologists. He solved a number of celebrated problems in algebraic topology, a subject in which he initiated many of the most active areas of research. He wrote a large number of papers during the period 1955-1988, and they are characterised by elegant writing and depth of thought. Few of them have been superseded by later work. This selection, in two volumes, brings together all his major research contributions. They are organised by subject matter rather than in strict chronological order. The first contains papers on: the cobar construction, the Adams spectral sequence, higher-order cohomology operations, and the Hopf invariant one problem; a...
Contains a combination of selected papers given in honour of John Frank Adams which illustrate the profound influence that he had on algebraic topology.
J. Frank Adams, the founder of stable homotopy theory, gave a lecture series at the University of Chicago in 1967, 1970, and 1971, the well-written notes of which are published in this classic in algebraic topology. The three series focused on Novikov's work on operations in complex cobordism, Quillen's work on formal groups and complex cobordism, and stable homotopy and generalized homology. Adams's exposition of the first two topics played a vital role in setting the stage for modern work on periodicity phenomena in stable homotopy theory. His exposition on the third topic occupies the bulk of the book and gives his definitive treatment of the Adams spectral sequence along with many detailed examples and calculations in KU-theory that help give a feel for the subject.
J. Frank Adams was internationally known and respected as one of the great algebraic topologists. Adams had long been fascinated with exceptional Lie groups, about which he published several papers, and he gave a series of lectures on the topic. The author's detailed lecture notes have enabled volume editors Zafer Mahmud and Mamoru Mimura to preserve the substance and character of Adams's work. Because Lie groups form a staple of most mathematics graduate students' diets, this work on exceptional Lie groups should appeal to many of them, as well as to researchers of algebraic geometry and topology. J. Frank Adams was Lowndean professor of astronomy and geometry at the University of Cambridge. The University of Chicago Press published his Lectures on Lie Groups and has reprinted his Stable Homotopy and Generalized Homology. Chicago Lectures in Mathematics Series
"[Lectures in Lie Groups] fulfills its aim admirably and should be a useful reference for any mathematician who would like to learn the basic results for compact Lie groups. . . . The book is a well written basic text [and Adams] has done a service to the mathematical community."—Irving Kaplansky
This set of notes, for graduate students who are specializing in algebraic topology, adopts a novel approach to the teaching of the subject. It begins with a survey of the most beneficial areas for study, with recommendations regarding the best written accounts of each topic. Because a number of the sources are rather inaccessible to students, the second part of the book comprises a collection of some of these classic expositions, from journals, lecture notes, theses and conference proceedings. They are connected by short explanatory passages written by Professor Adams, whose own contributions to this branch of mathematics are represented in the reprinted articles.