You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This self-contained introduction discusses the evolution of the notion of coherent states, from the early works of Schr?dinger to the most recent advances, including signal analysis. An integrated and modern approach to the utility of coherent states in many different branches of physics, it strikes a balance between mathematical and physical descriptions. Split into two parts, the first introduces readers to the most familiar coherent states, their origin, their construction, and their application and relevance to various selected domains of physics. Part II, mostly based on recent original results, is devoted to the question of quantization of various sets through coherent states, and shows the link to procedures in signal analysis.
This contributed volume features invited papers on current research and applications in mathematical structures. Featuring various disciplines in the mathematical sciences and physics, articles in this volume discuss fundamental scientific and mathematical concepts as well as their applications to topical problems. Special emphasis is placed on important methods, research directions and applications of analysis within and beyond each field. Covered topics include Metric operators and generalized hermiticity, Semi-frames, Hilbert-Schmidt operator, Symplectic affine action, Fractional Brownian motion, Walker Osserman metric, Nonlinear Maxwell equations, The Yukawa model, Heisenberg observables...
This volume shares and makes accessible new research lines and recent results in several branches of theoretical and mathematical physics, among them Quantum Optics, Coherent States, Integrable Systems, SUSY Quantum Mechanics, and Mathematical Methods in Physics. In addition to a selection of the contributions presented at the "6th International Workshop on New Challenges in Quantum Mechanics: Integrability and Supersymmetry", held in Valladolid, Spain, 27-30 June 2017, several high quality contributions from other authors are also included. The conference gathered 60 participants from many countries working in different fields of Theoretical Physics, and was dedicated to Prof. Véronique Hussin—an internationally recognized expert in many branches of Mathematical Physics who has been making remarkable contributions to this field since the 1980s. The reader will find interesting reviews on the main topics from internationally recognized experts in each field, as well as other original contributions, all of which deal with recent applications or discoveries in the aforementioned areas.
This book presents the up-to-date status of quantum theory and the outlook for its development in the 21st century. The covered topics include basic problems of quantum physics, with emphasis on the foundations of quantum theory, quantum computing and control, quantum optics, coherent states and Wigner functions, as well as on methods of quantum physics based on Lie groups and algebras, quantum groups and noncommutative geometry.
This self-contained introduction discusses the evolution of the notion of coherent states, from the early works of Schrödinger to the most recent advances, including signal analysis. An integrated and modern approach to the utility of coherent states in many different branches of physics, it strikes a balance between mathematical and physical descriptions. Split into two parts, the first introduces readers to the most familiar coherent states, their origin, their construction, and their application and relevance to various selected domains of physics. Part II, mostly based on recent original results, is devoted to the question of quantization of various sets through coherent states, and shows the link to procedures in signal analysis.
The XIIIth Bialowieza Summer Workshop was held from July 9 to 15, 1994. While still within the general framework of Differential Geometric Methods in Physics, the XnIth Workshop was expanded in scope to include quantum groups, q-deformations and non-commutative geometry. It is expected that lectures on these topics will now become an integral part of future workshops. In the more traditional areas, lectures were devoted to topics in quantization, field theory, group representations, coherent states, complex and Poisson structures, the Berry phase, graded contractions and some infinite-dimensional systems. Those of us who have taken part in the evolution of the workshops over the years, feel ...
This volume continues the series of proceedings of summer schools on theoretical physics which aim at an adequate description of the structure of condensed matter in terms of sophisticated, advanced mathematical tools. This time, the main emphasis is put on the question of whether (and when) the energy bands in solids are continuous. Profs. L Michel, J Zak and others consider the origin, existence and continuity of band structure. Also, some previously discussed problems (magnetic symmetry, flux quantization, statistics, quasicrystals, the Bethe ansatz) are pursued further, and appropriate mathematical tools, rooted in “actions of groups on sets”, are developed.
This second edition is fully updated, covering in particular new types of coherent states (the so-called Gazeau-Klauder coherent states, nonlinear coherent states, squeezed states, as used now routinely in quantum optics) and various generalizations of wavelets (wavelets on manifolds, curvelets, shearlets, etc.). In addition, it contains a new chapter on coherent state quantization and the related probabilistic aspects. As a survey of the theory of coherent states, wavelets, and some of their generalizations, it emphasizes mathematical principles, subsuming the theories of both wavelets and coherent states into a single analytic structure. The approach allows the user to take a classical-lik...
The following topics are discussed in this volume: recent developments in operator theory, coherent states and wavelet analysis, geometric and topological methods in theoretical physics and quantum field theory, and applications of these methods of mathematical physics to problems in atomic and molecular physics as well as the world of the elementary particles and their fundamental interactions. Two extensive sets of lecture notes on quantization techniques in general, and quantum gauge theories and strings as an avenue towards quantum geometry, are also included. The volume should be of interest to anyone working in a field using the mathematical methods associated with any of these topics.