Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Python Data Science Handbook
  • Language: en
  • Pages: 548

Python Data Science Handbook

For many researchers, Python is a first-class tool mainly because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all—IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools. Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the m...

Python Data Science Handbook
  • Language: en
  • Pages: 612

Python Data Science Handbook

Python is a first-class tool for many researchers, primarily because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the new edition of Python Data Science Handbook do you get them all--IPython, NumPy, pandas, Matplotlib, scikit-learn, and other related tools. Working scientists and data crunchers familiar with reading and writing Python code will find the second edition of this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learn...

Python for Data Analysis
  • Language: en
  • Pages: 547

Python for Data Analysis

Get complete instructions for manipulating, processing, cleaning, and crunching datasets in Python. Updated for Python 3.6, the second edition of this hands-on guide is packed with practical case studies that show you how to solve a broad set of data analysis problems effectively. You’ll learn the latest versions of pandas, NumPy, IPython, and Jupyter in the process. Written by Wes McKinney, the creator of the Python pandas project, this book is a practical, modern introduction to data science tools in Python. It’s ideal for analysts new to Python and for Python programmers new to data science and scientific computing. Data files and related material are available on GitHub. Use the IPyt...

Pandas Cookbook
  • Language: en
  • Pages: 534

Pandas Cookbook

Over 95 hands-on recipes to leverage the power of pandas for efficient scientific computation and data analysis About This Book Use the power of pandas to solve most complex scientific computing problems with ease Leverage fast, robust data structures in pandas to gain useful insights from your data Practical, easy to implement recipes for quick solutions to common problems in data using pandas Who This Book Is For This book is for data scientists, analysts and Python developers who wish to explore data analysis and scientific computing in a practical, hands-on manner. The recipes included in this book are suitable for both novice and advanced users, and contain helpful tips, tricks and cave...

Python for Data Science For Dummies
  • Language: en
  • Pages: 502

Python for Data Science For Dummies

The fast and easy way to learn Python programming and statistics Python is a general-purpose programming language created in the late 1980s—and named after Monty Python—that's used by thousands of people to do things from testing microchips at Intel, to powering Instagram, to building video games with the PyGame library. Python For Data Science For Dummies is written for people who are new to data analysis, and discusses the basics of Python data analysis programming and statistics. The book also discusses Google Colab, which makes it possible to write Python code in the cloud. Get started with data science and Python Visualize information Wrangle data Learn from data The book provides the statistical background needed to get started in data science programming, including probability, random distributions, hypothesis testing, confidence intervals, and building regression models for prediction.

Software Engineering for Data Scientists
  • Language: en
  • Pages: 248

Software Engineering for Data Scientists

Data science happens in code. The ability to write reproducible, robust, scaleable code is key to a data science project's success—and is absolutely essential for those working with production code. This practical book bridges the gap between data science and software engineering,and clearly explains how to apply the best practices from software engineering to data science. Examples are provided in Python, drawn from popular packages such as NumPy and pandas. If you want to write better data science code, this guide covers the essential topics that are often missing from introductory data science or coding classes, including how to: Understand data structures and object-oriented programming Clearly and skillfully document your code Package and share your code Integrate data science code with a larger code base Learn how to write APIs Create secure code Apply best practices to common tasks such as testing, error handling, and logging Work more effectively with software engineers Write more efficient, maintainable, and robust code in Python Put your data science projects into production And more

Panel Nowcasting for Countries Whose Quarterly GDPs are Unavailable
  • Language: en
  • Pages: 36

Panel Nowcasting for Countries Whose Quarterly GDPs are Unavailable

Quarterly GDP statistics facilitate timely economic assessment, but the availability of such data are limited for more than 60 developing economies, including about 20 countries in sub-Saharan Africa as well as more than two-thirds of fragile and conflict-affected states. To address this limited data availablity, this paper proposes a panel approach that utilizes a statistical relationship estimated from countries where data are available, to estimate quarterly GDP statistics for countries that do not publish such statistics by leveraging the indicators readily available for many countries. This framework demonstrates potential, especially when applied for similar country groups, and could provide valuable real-time insights into economic conditions supported by empirical evidence.

Learning Data Science
  • Language: en
  • Pages: 643

Learning Data Science

As an aspiring data scientist, you appreciate why organizations rely on data for important decisions--whether it's for companies designing websites, cities deciding how to improve services, or scientists discovering how to stop the spread of disease. And you want the skills required to distill a messy pile of data into actionable insights. We call this the data science lifecycle: the process of collecting, wrangling, analyzing, and drawing conclusions from data. Learning Data Science is the first book to cover foundational skills in both programming and statistics that encompass this entire lifecycle. It's aimed at those who wish to become data scientists or who already work with data scient...

Computational Modeling by Case Study
  • Language: en
  • Pages: 849

Computational Modeling by Case Study

Mathematical models power the modern world; they allow us to design safe buildings, investigate changes to the climate, and study the transmission of diseases through a population. However, all models are uncertain: building contractors deviate from the planned design, humans impact the climate unpredictably, and diseases mutate and change. Modern advances in mathematics and statistics provide us with techniques to understand and quantify these sources of uncertainty, allowing us to predict and design with confidence. This book presents a comprehensive treatment of uncertainty: its conceptual nature, techniques to quantify uncertainty, and numerous examples to illustrate sound approaches. Several case studies are discussed in detail to demonstrate an end-to-end treatment of scientific modeling under uncertainty, including framing the problem, building and assessing a model, and answering meaningful questions. The book illustrates a computational approach with the Python package Grama, presenting fully reproducible examples that students and practitioners can quickly adapt to their own problems.

Data Science: The Hard Parts
  • Language: en
  • Pages: 257

Data Science: The Hard Parts

This practical guide provides a collection of techniques and best practices that are generally overlooked in most data engineering and data science pedagogy. A common misconception is that great data scientists are experts in the "big themes" of the discipline—machine learning and programming. But most of the time, these tools can only take us so far. In practice, the smaller tools and skills really separate a great data scientist from a not-so-great one. Taken as a whole, the lessons in this book make the difference between an average data scientist candidate and a qualified data scientist working in the field. Author Daniel Vaughan has collected, extended, and used these skills to create...