You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume covers many topics, including number theory, Boolean functions, combinatorial geometry, and algorithms over finite fields. It contains many new, theoretical and applicable results, as well as surveys that were presented by the top specialists in these areas. New results include an answer to one of Serre's questions, posted in a letter to Top; cryptographic applications of the discrete logarithm problem related to elliptic curves and hyperelliptic curves; construction of function field towers; construction of new classes of Boolean cryptographic functions; and algorithmic applications of algebraic geometry.
I. Introduction 1. Finite fields 2. Projective spaces and algebraic varieties II. Elementary general properties 3. Subspaces 4. Partitions 5. Canonical forms for varieties and polarities III. The line and the plane 6. The line 7. First properties of the plane 8. Ovals 9. Arithmetic of arcs of degree two 10. Arcs in ovals 11. Cubic curves 12. Arcs of higher degree 13. Blocking sets 14. Small planes Appendix Notation References.
This volume contains the proceedings of the Ninth International Conference on Finite Fields and Applications, held in Ireland, July 13-17, 2009. It includes survey papers by all invited speakers as well as selected contributed papers. Finite fields continue to grow in mathematical importance due to applications in many diverse areas. This volume contains a variety of results advancing the theory of finite fields and connections with, as well as impact on, various directions in number theory, algebra, and algebraic geometry. Areas of application include algebraic coding theory, cryptology, and combinatorial design theory.
This book is the second edition of the third and last volume of a treatise on projective spaces over a finite field, also known as Galois geometries. This volume completes the trilogy comprised of plane case (first volume) and three dimensions (second volume). This revised edition includes much updating and new material. It is a mostly self-contained study of classical varieties over a finite field, related incidence structures and particular point sets in finite n-dimensional projective spaces. General Galois Geometries is suitable for PhD students and researchers in combinatorics and geometry. The separate chapters can be used for courses at postgraduate level.
Historical papers are prefixed to several issues.
Economists and theologians usually inhabit different intellectual worlds. Economists investigate the workings of markets and tend to set ethical questions aside. Theologians, anxious to take up concerns raised by market outcomes, often dismiss economics and lose insights into the influence of market incentives on individual behavior. Mary L. Hirschfeld, who was a professor of economics for fifteen years before training as a theologian, seeks to bridge these two fields in this innovative work about economics and the thought of St. Thomas Aquinas. According to Hirschfeld, an economics rooted in Thomistic thought integrates many of the insights of economists with a larger view of the good life,...