You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
These two volumes represent the culmination of the Special Year `84-'85 in Reacting Flows held at Cornell University. As the proceedings of the 1985 AMS/SIAM Summer Seminar in Applied Mathematics, the volumes focus on both mathematical and computational questions in combustion and chemical reactors. They are addressed to researchers and graduate students in the theory of reacting flows. Together they provide a sound basis and many incentives for future research, especially in computational aspects of reacting flows. Although the theory of reacting flows has developed rapidly, researchers in the two subareas of combustion and chemical reactors have not communicated. The main goal of this seminar was to synthesize the mathematical theory and bring it to the interface with large-scale computing. All of the papers have high research value, but the first five introductory lectures should be especially noted.
Selected, peer reviewed papers from the 2014 4th International Conference on Materials Science and Information Technology (MSIT 2014), June 14-15, 2014, Tianjin, China
The text comprehensively highlights the key issues surrounding the implementation of waste-to-energy systems, such as site selection, regulatory aspects and financial, and economic implications. It further discusses environmental aspects of food waste to energy conversion, microbial fuel cells (MFCs) for waste recycling and energy production, and valorization of algal blooms and their residues into renewable energy. This book: Discusses the environmental impact of waste-to-energy and sustainable waste-to-energy technologies in a comprehensive manner. Presents life cycle assessment studies and perspective solutions in waste-to-energy sectors. Covers applications of smart materials in thermal energy storage systems. Explains thermo-chemical technologies for recycling plastic waste for energy production and recovery of valuable products. Illustrates biorefineries and case studies for sustainable waste valorization. It is primarily written for senior undergraduate nad graduate students, and academic researchers in the fields of mechanical engineering, environmental engineering, energy studies, production engineering, industrial engineering, and manufacturing engineering.
Interest in anaerobic digestion (AD), the process of energy production through the production of biogas, has increased rapidly in recent years. Agricultural and other organic waste are important substrates that can be treated by AD. This book is one of the first to provide a broad introduction to anaerobic digestion and its potential to turn agricultural crops or crop residues, animal and other organic waste, into biomethane. The substrates used can include any non-woody materials, including grass and maize silage, seaweeds, municipal and industrial wastes. These are all systematically reviewed in terms of their suitability from a biological, technical and economic perspective. In the past the technical competence and high capital investment required for industrial-scale anaerobic digesters has limited their uptake, but the authors show that recent advances have made smaller-scale systems more viable through a greater understanding of optimising bacterial metabolism and productivity. Broader issues such as life cycle assessment and energy policies to promote AD are also discussed.
‘Waste’ is generally identified as goods or material that are perceived to be mostly valueless. However, objects that are perceived to be waste based on consumers’ object valuation can be redefined to create value. This requires a multitude of efforts using different strategies in waste prevention and management. This book is an edited collection of various chemical approaches used for valorization of solid wastes, particularly, waste electrical and electronic equipment, plastic waste, and agro-residue waste, that provide research insights into the concept "waste-to-energy". Covering a variety of interdisciplinary topics on waste treatment and resource recovery makes the book one for all that serves as an excellent reading material for engineers, science scholars, entrepreneurs, and organizations who are working in the field of waste management.
Short Blurb This handbook covers the different aspects of the aquatic environment, microbiology, and microbial applications. It highlights the role of microorganisms as pollution indicators and as bio-control agents. The book covers the impact of pollution on microorganisms, biofilms, cyanobacterial blooms, and the metagenomics approach to isolate microbes. Standard Blurb This comprehensive handbook covers the different aspects of the aquatic environment, microbiology, and microbial applications. The world’s aquatic environment is facing a serious threat due to inappropriate planning, implementation, and management. This book compiles effective strategies for managing the aquatic environme...
Sewage Treatment Plants: Economic Evaluation of Innovative Technologies for Energy Efficiency aims to show how cost saving can be achieved in sewage treatment plants through implementation of novel, energy efficient technologies or modification of the conventional, energy demanding treatment facilities towards the concept of energy streamlining. The book brings together knowledge from Engineering, Economics, Utility Management and Practice and helps to provide a better understanding of the real economic value with methodologies and practices about innovative energy technologies and policies in sewage treatment plants.
Toxic metals are a class of chemical elements that, in certain concentrations, can cause damage to the health of humans and animals, in addition to impacting ecosystems. These metals are emitted to the environment mainly by anthropological sources, such as industries, extractive processes and burning of fossil fuels. This book presents the main sources of toxic metals emission, demonstrate the state of the art of waste disposal and valuation techniques, especially solids and wastewater treatment.
This up-to-date faculty directory lists the contact information of all the faculty members, placement administrators, and student organizations of almost 500 worldwide universities and technical institutes offering chemical engineering curricula. This offers a comprehensive reference tool that is unique and valuable, in that there is no such directory available on chemical engineering. The indices make it easy to find the current affiliation of any chemical, biological and environmental engineering faculty by listing in alphabetical order.
ESCAPE-20 is the most recent in a series of conferences that serves as a forum for engineers, scientists, researchers, managers and students from academia and industry to present and discuss progress being made in the area of "Computer Aided Process Engineering" (CAPE). CAPE covers computer-aided methods, algorithms and techniques related to process and product engineering. The ESCAPE-20 scientific program reflects the strategic objectives of the CAPE Working Party: to check the status of historically consolidated topics by means of their industrial application and to evaluate their emerging issues. - Includes a CD that contains all research papers and contributions - Features a truly international scope, with guest speakers and keynote talks from leaders in science and industry - Presents papers covering the latest research, key topical areas, and developments in computer-aided process engineering (CAPE)