You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book constitutes the thoroughly refereed post-conference proceedings of the 7th International Conference on Parallel Processing and Applied Mathematics, PPAM 2007, held in Gdansk, Poland, in September 2007. The 63 revised full papers of the main conference presented together with 85 revised workshop papers were carefully reviewed and selected from over 250 initial submissions. The papers are organized in topical sections on parallel/distributed architectures and mobile computing, numerical algorithms and parallel numerics, parallel and distributed non-numerical algorithms, environments and tools for as well as applications of parallel/distributed/grid computing, evolutionary computing, ...
Nature-Inspired Algorithms have been gaining much popularity in recent years due to the fact that many real-world optimisation problems have become increasingly large, complex and dynamic. The size and complexity of the problems nowadays require the development of methods and solutions whose efficiency is measured by their ability to find acceptable results within a reasonable amount of time, rather than an ability to guarantee the optimal solution. This volume 'Nature-Inspired Algorithms for Optimisation' is a collection of the latest state-of-the-art algorithms and important studies for tackling various kinds of optimisation problems. It comprises 18 chapters, including two introductory chapters which address the fundamental issues that have made optimisation problems difficult to solve and explain the rationale for seeking inspiration from nature. The contributions stand out through their novelty and clarity of the algorithmic descriptions and analyses, and lead the way to interesting and varied new applications.
This book constitutes the refereed proceedings of the 5th European Conference on Evolutionary Computation in Combinatorial Optimization, EvoCOP 2005, held in Lausanne, Switzerland in March/April 2005. The 24 revised full papers presented were carefully reviewed and selected from 66 submissions. The papers cover evolutionary algorithms as well as related approaches like scatter search, simulated annealing, ant colony optimization, immune algorithms, variable neighborhood search, hyperheuristics, and estimation of distribution algorithms. The papers deal with representations, analysis of operators and fitness landscapes, and comparison algorithms. Among the combinatorial optimization problems studied are graph coloring, quadratic assignment, knapsack, graph matching, packing, scheduling, timetabling, lot-sizing, and the traveling salesman problem.
Knowledge processing and decision making in agent-based systems constitute the key components of intelligent machines. The contributions included in the book are: Innovations in Knowledge Processing and Decision Making in Agent-Based Systems Towards Real-World HTN Planning Agents Mobile Agent-Based System for Distributed Software Maintenance Software Agents in New Generation Networks: Towards the Automation of Telecom Processes Multi-agent Systems and Paraconsistent Knowledge An Agent-based Negotiation Platform for Collaborative Decision-Making in Construction Supply Chain An Event-Driven Algorithm for Agents at the Web A Generic Mobile Agent Framework Toward Ambient Intelligence Developing Actionable Trading Strategies Agent Uncertainty Model and Quantum Mechanics Representation Agent Transportation Layer Adaptation System Software Agents to Enable Service Composition through Negotiation Advanced Technology Towards Developing Decentralized Autonomous Flexible Manufacturing Systems
The application of sophisticated evolutionary computing approaches for solving complex problems with multiple conflicting objectives in science and engineering have increased steadily in the recent years. Within this growing trend, Memetic algorithms are, perhaps, one of the most successful stories, having demonstrated better efficacy in dealing with multi-objective problems as compared to its conventional counterparts. Nonetheless, researchers are only beginning to realize the vast potential of multi-objective Memetic algorithm and there remain many open topics in its design. This book presents a very first comprehensive collection of works, written by leading researchers in the field, and reflects the current state-of-the-art in the theory and practice of multi-objective Memetic algorithms. "Multi-Objective Memetic algorithms" is organized for a wide readership and will be a valuable reference for engineers, researchers, senior undergraduates and graduate students who are interested in the areas of Memetic algorithms and multi-objective optimization.
This book constitutes the refereed proceedings of the 12th European Conference on Evolutionary Computation in Combinatorial Optimization, EvoCOP 2012, held in Málaga, Spain, in April 2012, colocated with the Evo* 2012 events EuroGP, EvoBIO, EvoMUSART, and EvoApplications. . The 22 revised full papers presented were carefully reviewed and selected from 48 submissions. The papers present the latest research and discuss current developments and applications in metaheuristics - a paradigm to effectively solve difficult combinatorial optimization problems appearing in various industrial, economic, and scientific domains. Prominent examples of metaheuristics are evolutionary algorithms, simulated annealing, tabu search, scatter search, memetic algorithms, variable neighborhood search, iterated local search, greedy randomized adaptive search procedures, estimation of distribution algorithms, and ant colony optimization.
Biologically inspiredcomputing isdi?erentfromconventionalcomputing.Ithas adi?erentfeel; often the terminology does notsound like it’stalkingabout machines.The activities ofthiscomputingsoundmorehumanthanmechanistic as peoplespeak ofmachines that behave, react, self-organize,learn, generalize, remember andeven to forget.Much ofthistechnology tries to mimic nature’s approach in orderto mimicsome of nature’s capabilities.They havearigorous, mathematical basisand neuralnetworks forexamplehaveastatistically valid set on which the network istrained. Twooutlinesaresuggestedasthepossibletracksforpatternrecognition.They are neuralnetworks andfunctionalnetworks.NeuralNetworks (many interc- necte...
Addresses innovations in technology relating to the energy efficiency of a wide variety of contemporary computer systems and networks With concerns about global energy consumption at an all-time high, improving computer networks energy efficiency is becoming an increasingly important topic. Large-Scale Distributed Systems and Energy Efficiency: A Holistic View addresses innovations in technology relating to the energy efficiency of a wide variety of contemporary computer systems and networks. After an introductory overview of the energy demands of current Information and Communications Technology (ICT), individual chapters offer in-depth analyses of such topics as cloud computing, green netw...
In recent years, the issue of linkage in GEAs has garnered greater attention and recognition from researchers. Conventional approaches that rely much on ad hoc tweaking of parameters to control the search by balancing the level of exploitation and exploration are grossly inadequate. As shown in the work reported here, such parameters tweaking based approaches have their limits; they can be easily ”fooled” by cases of triviality or peculiarity of the class of problems that the algorithms are designed to handle. Furthermore, these approaches are usually blind to the interactions between the decision variables, thereby disrupting the partial solutions that are being built up along the way.
This book constitutes the refereed proceedings of the 22nd European Conference on Evolutionary Computation in Combinatorial Optimization, EvoCOP 2022, held as part of Evo*2022, in Madrid, Spain, during April 20-21, 2022, co-located with the Evo*2022 events: EvoMUSART, EvoApplications, and EuroGP. The 13 revised full papers presented in this book were carefully reviewed and selected from 28 submissions. They present recent theoretical and experimental advances in combinatorial optimization, evolutionary algorithms, and related research fields.