Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Do Not Erase
  • Language: en
  • Pages: 248

Do Not Erase

"Even as other disciplines have moved toward using whiteboards and projectors in their teaching and research, the mathematics community has largely remained wedded to the chalkboard. Chalkboards are not only an important tool for mathematical thought, but also a mainstay of mathematical culture-so much so that mathematicians have been known to stockpile particular types of chalk. In Do Not Erase, photographer Jessica Wynne explores the role of the chalkboard in mathematics through a series of photographs of mathematicians' chalkboards and accompanying essays. This book pays homage to the mathematician's cherished chalk board as a means to unlocking mathematical creative expression. The photo...

The Nothing that is
  • Language: en
  • Pages: 238

The Nothing that is

In the tradition of "Longitude, " a small and engagingly written book on the history and meaning of zero--a "tour de force" of science history that takes us through the hollow circle that leads to infinity. 32 illustrations.

Fundamentals of Fourier Analysis
  • Language: en
  • Pages: 416

Fundamentals of Fourier Analysis

None

An Introduction to Automorphic Representations
  • Language: en
  • Pages: 611

An Introduction to Automorphic Representations

None

A Course in Real Algebraic Geometry
  • Language: en
  • Pages: 411

A Course in Real Algebraic Geometry

This textbook is designed for a one-year graduate course in real algebraic geometry, with a particular focus on positivity and sums of squares of polynomials. The first half of the book features a thorough introduction to ordered fields and real closed fields, including the Tarski-Seidenberg projection theorem and transfer principle. Classical results such as Artin's solution to Hilbert's 17th problem and Hilbert's theorems on sums of squares of polynomials are presented in detail. Other features include careful introductions to the real spectrum and to the geometry of semialgebraic sets. The second part studies Archimedean positivstellensätze in great detail and in various settings, togeth...

Partial Differential Equations and Inverse Problems
  • Language: en
  • Pages: 426

Partial Differential Equations and Inverse Problems

This proceedings volume is a collection of articles from the Pan-American Advanced Studies Institute on partial differential equations, nonlinear analysis and inverse problems held in Santiago (Chile). Interactions among partial differential equations, nonlinear analysis, and inverse problems have produced remarkable developments over the last couple of decades. This volume contains survey articles reflecting the work of leading experts who presented minicourses at the event. Contributors include J. Busca, Y. Capdeboscq, M.S. Vogelius, F. A. Grunbaum, L. F. Matusevich, M. de Hoop, and P. Kuchment. The volume is suitable for graduate students and researchers interested in partial differential equations and their applications in nonlinear analysis and inverse problems.

Continuous Parameter Markov Processes and Stochastic Differential Equations
  • Language: en
  • Pages: 502

Continuous Parameter Markov Processes and Stochastic Differential Equations

This graduate text presents the elegant and profound theory of continuous parameter Markov processes and many of its applications. The authors focus on developing context and intuition before formalizing the theory of each topic, illustrated with examples. After a review of some background material, the reader is introduced to semigroup theory, including the Hille–Yosida Theorem, used to construct continuous parameter Markov processes. Illustrated with examples, it is a cornerstone of Feller’s seminal theory of the most general one-dimensional diffusions studied in a later chapter. This is followed by two chapters with probabilistic constructions of jump Markov processes, and processes w...

Microlocal Methods in Mathematical Physics and Global Analysis
  • Language: en
  • Pages: 147

Microlocal Methods in Mathematical Physics and Global Analysis

Microlocal analysis is a field of mathematics that was invented in the mid-20th century for the detailed investigation of problems from partial differential equations, which incorporated and made rigorous many ideas that originated in physics. Since then it has grown to a powerful machine which is used in global analysis, spectral theory, mathematical physics and other fields, and its further development is a lively area of current mathematical research. In this book extended abstracts of the conference 'Microlocal Methods in Mathematical Physics and Global Analysis', which was held at the University of Tübingen from the 14th to the 18th of June 2011, are collected.​

Geometric and Spectral Analysis
  • Language: en
  • Pages: 378

Geometric and Spectral Analysis

In 2012, the Centre de Recherches Mathématiques was at the center of many interesting developments in geometric and spectral analysis, with a thematic program on Geometric Analysis and Spectral Theory followed by a thematic year on Moduli Spaces, Extremality and Global Invariants. This volume contains original contributions as well as useful survey articles of recent developments by participants from three of the workshops organized during these programs: Geometry of Eigenvalues and Eigenfunctions, held from June 4-8, 2012; Manifolds of Metrics and Probabilistic Methods in Geometry and Analysis, held from July 2-6, 2012; and Spectral Invariants on Non-compact and Singular Spaces, held from July 23-27, 2012. The topics covered in this volume include Fourier integral operators, eigenfunctions, probability and analysis on singular spaces, complex geometry, Kähler-Einstein metrics, analytic torsion, and Strichartz estimates. This book is co-published with the Centre de Recherches Mathématiques.

Trees of Hyperbolic Spaces
  • Language: en
  • Pages: 295

Trees of Hyperbolic Spaces

This book offers an alternative proof of the Bestvina?Feighn combination theorem for trees of hyperbolic spaces and describes uniform quasigeodesics in such spaces. As one of the applications of their description of uniform quasigeodesics, the authors prove the existence of Cannon?Thurston maps for inclusion maps of total spaces of subtrees of hyperbolic spaces and of relatively hyperbolic spaces. They also analyze the structure of Cannon?Thurston laminations in this setting. Furthermore, some group-theoretic applications of these results are discussed. This book also contains background material on coarse geometry and geometric group theory.