You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This multi-author contributed proceedings volume contains recent advances in several areas of Computational and Applied Mathematics. Each review is written by well known leaders of Computational and Applied Mathematics. The book gives a comprehensive account of a variety of topics including – Efficient Global Methods for the Numerical Solution of Nonlinear Systems of Two point Boundary Value Problems; Advances on collocation based numerical methods for Ordinary Differential Equations and Volterra Integral Equations; Basic Methods for Computing Special Functions, Melt Spinning: Optimal Control and Stability Issues; Brief survey on the CP methods for the Schrödinger equation; Symplectic Partitioned Runge-Kutta methods for the numerical integration of periodic and oscillatory problems. Recent Advances in Computational and Applied Mathematics is aimed at advanced undergraduates and researchers who are working in these fast moving fields.
Transcendental equations arise in every branch of science and engineering. While most of these equations are easy to solve, some are not, and that is where this book serves as the mathematical equivalent of a skydiver's reserve parachute?not always needed, but indispensable when it is. The author?s goal is to teach the art of finding the root of a single algebraic equation or a pair of such equations. Solving Transcendental Equations is unique in that it is the first book to describe the Chebyshev-proxy rootfinder, which is the most reliable way to find all zeros of a smooth function on the interval, and the very reliable spectrally enhanced Weyl bisection/marching triangles method for bivar...
This book constitutes the refereed proceedings of the 12th International Conference on Artificial Intelligence and Symbolic Computation, AISC 2014, held in Seville, Spain, in December 2014. The 15 full papers presented together with 2 invited papers were carefully reviewed and selected from 22 submissions. The goals were on one side to bind mathematical domains such as algebraic topology or algebraic geometry to AI but also to link AI to domains outside pure algorithmic computing. The papers address all current aspects in the area of symbolic computing and AI: basic concepts of computability and new Turing machines; logics including non-classical ones; reasoning; learning; decision support systems; and machine intelligence and epistemology and philosophy of symbolic mathematical computing.
Walter Gautschi has written extensively on topics ranging from special functions, quadrature and orthogonal polynomials to difference and differential equations, software implementations, and the history of mathematics. He is world renowned for his pioneering work in numerical analysis and constructive orthogonal polynomials, including a definitive textbook in the former, and a monograph in the latter area. This three-volume set, Walter Gautschi: Selected Works with Commentaries, is a compilation of Gautschi’s most influential papers and includes commentaries by leading experts. The work begins with a detailed biographical section and ends with a section commemorating Walter’s prematurel...
This volume contains the proceedings of the AMS Special Session on Harmonic Analysis and Partial Differential Equations, held from April 21–22, 2018, at Northeastern University, Boston, Massachusetts. The book features a series of recent developments at the interface between harmonic analysis and partial differential equations and is aimed toward the theoretical and applied communities of researchers working in real, complex, and harmonic analysis, partial differential equations, and their applications. The topics covered belong to the general areas of the theory of function spaces, partial differential equations of elliptic, parabolic, and dissipative types, geometric optics, free boundary problems, and ergodic theory, and the emphasis is on a host of new concepts, methods, and results.
This book constitutes the refereed proceedings of the Second International Congress on Mathematical Software, ICMS 2006. The book presents 45 revised full papers, carefully reviewed and selected for presentation. The papers are organized in topical sections on new developments in computer algebra packages, interfacing computer algebra in mathematical visualization, software for algebraic geometry and related topics, number-theoretical software, methods in computational number theory, free software for computer algebra, and general issues.