You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The first comprehensive introduction to the powerful moment approach for solving global optimization problems.
1. The generalized moment problem. 1.1. Formulations. 1.2. Duality theory. 1.3. Computational complexity. 1.4. Summary. 1.5. Exercises. 1.6. Notes and sources -- 2. Positive polynomials. 2.1. Sum of squares representations and semi-definite optimization. 2.2. Nonnegative versus s.o.s. polynomials. 2.3. Representation theorems : univariate case. 2.4. Representation theorems : mutivariate case. 2.5. Polynomials positive on a compact basic semi-algebraic set. 2.6. Polynomials nonnegative on real varieties. 2.7. Representations with sparsity properties. 2.8. Representation of convex polynomials. 2.9. Summary. 2.10. Exercises. 2.11. Notes and sources -- 3. Moments. 3.1. The one-dimensional moment...
Semidefinite and conic optimization is a major and thriving research area within the optimization community. Although semidefinite optimization has been studied (under different names) since at least the 1940s, its importance grew immensely during the 1990s after polynomial-time interior-point methods for linear optimization were extended to solve semidefinite optimization problems. Since the beginning of the 21st century, not only has research into semidefinite and conic optimization continued unabated, but also a fruitful interaction has developed with algebraic geometry through the close connections between semidefinite matrices and polynomial optimization. This has brought about importan...
This accessible overview introduces the Christoffel-Darboux kernel as a novel, simple and efficient tool in statistical data analysis.
The theory of optimization, understood in a broad sense, is the basis of modern applied mathematics, covering a large spectrum of topics from theoretical considerations (structure, stability) to applied operational research and engineering applications. The compiled material of this book puts on display this versatility, by exhibiting the three parallel and complementary components of optimization: theory, algorithms, and practical problems. The book contains an expanded version of three series of lectures delivered by the authors at the CRM in July 2009. The first part is a self-contained course on the general moment problem and its relations with semidefinite programming. The second part is dedicated to the problem of determination of Nash equilibria from an algorithmic viewpoint. The last part presents congestion models for traffic networks and develops modern optimization techniques for finding traffic equilibria based on stochastic optimization and game theory.
Positive Polynomials in Control originates from an invited session presented at the IEEE CDC 2003 and gives a comprehensive overview of existing results in this quickly emerging area. This carefully edited book collects important contributions from several fields of control, optimization, and mathematics, in order to show different views and approaches of polynomial positivity. The book is organized in three parts, reflecting the current trends in the area: 1. applications of positive polynomials and LMI optimization to solve various control problems, 2. a mathematical overview of different algebraic techniques used to cope with polynomial positivity, 3. numerical aspects of positivity of polynomials, and recently developed software tools which can be employed to solve the problems discussed in the book.
This book is about discrete-time, time-homogeneous, Markov chains (Mes) and their ergodic behavior. To this end, most of the material is in fact about stable Mes, by which we mean Mes that admit an invariant probability measure. To state this more precisely and give an overview of the questions we shall be dealing with, we will first introduce some notation and terminology. Let (X,B) be a measurable space, and consider a X-valued Markov chain ~. = {~k' k = 0, 1, ... } with transition probability function (t.pJ.) P(x, B), i.e., P(x, B) := Prob (~k+1 E B I ~k = x) for each x E X, B E B, and k = 0,1, .... The Me ~. is said to be stable if there exists a probability measure (p.m.) /.l on B such that (*) VB EB. /.l(B) = Ix /.l(dx) P(x, B) If (*) holds then /.l is called an invariant p.m. for the Me ~. (or the t.p.f. P).
The 21 self-contained chapters in this book, include recent developments in several optimization-related topics such as decision theory, linear programming, turnpike theory, duality theory, convex analysis, and queueing theory. This work will be a valuable tool not only to specialists interested in the technical detail and various applications presented, but also to researchers interested in building upon the book’s theoretical results.
This book analyzes and compares four closely related problems, namely linear programming, integer programming, linear integration, and linear summation (or counting). The book provides some new insights on duality concepts for integer programs.