You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Introduced as a quantum extension of Maxwell's classical theory, quantum electrodynamics has been the first example of a Quantum Field Theory (QFT). Eventually, QFT has become the framework for the discussion of all fundamental interactions at the microscopic scale except, possibly, gravity. More surprisingly, it has also provided a framework for the understanding of second order phase transitions in statistical mechanics. As this work illustrates, QFT is the natural framework for the discussion of most systems involving an infinite number of degrees of freedom with local couplings. These systems range from cold Bose gases at the condensation temperature (about ten nanokelvin) to conventiona...
Describes particle physics and critical phenomena in statistical mechanics in a unified framework, incorporating graduate lecture notes from the 1970s and 1980s at several universities in Europe and the US. Deals with general field theory, functional integrals, and functional methods; renormalization properties of theories with symmetries and specific applications to particle physics; lattice gauge theories and asymptotic freedom in four dimensions; and the role of instantons and the application of instanton calculus to the large-order behavior of perturbation theory and the problem of summation of the perturbative expansion. Several chapters close with exercise, solutions or hints for which are provided. No dates are noted for the previous editions. Annotation copyright by Book News, Inc., Portland, OR
No further information has been provided for this title.
Quantum field theory is hardly comprehensible without path integrals: the goal of this book is to introduce students to this topic within the context of ordinary quantum mechanics and non-relativistic many-body theory, before facing the problems associated with the more involved quantum field theory formalism.
This engaging collection of readings presents a multifaceted view of contemporary gender relations. Using other inequalities such as race, class, and sexual orientation as a prism of difference, the readings present gender as it is situated in sexual, racial-ethnic, social class, physical abilities, age, and national citizenship contexts. In addition to articles about men, women, and sexual, and immigrant diversity, this reader also includes works on gender and globalization. The editors introduce this wide-ranging collection with a provocative analytical introduction that sets the stage for understanding gender as a socially constructed experience. Takes a sociological perspective on contem...
Theoretical physics is a cornerstone of modern physics and provides a foundation for all modern quantitative science. It aims to describe all natural phenomena using mathematical theories and models, and in consequence develops our understanding of the fundamental nature of the universe. This books offers an overview of major areas covering the recent developments in modern theoretical physics. Each chapter introduces a new key topic and develops the discussion in a self-contained manner. At the same time the selected topics have common themes running throughout the book, which connect the independent discussions. The main themes are renormalization group, fixed points, universality, and con...
Hardbound. This session of the Summer School in Theoretical Physics concentrated on the recent advances in areas of physics ranging from (super)strings to field theory and statistical mechanics. The articles contained in this volume provide a stimulating and up-to-date account of a rapidly growing subject.Discussion focussed on the many points of convergence between field theory and statistical mechanics: conformal field theory, field theory on a lattice, the study of strongly correlated electron systems, as in the Hubbard model, leading to topological Lagrangians, which are perhaps the key of the understanding of high Tc superconductivity or the fractional quantum Hall effect. The critical phenomena in (1+1) dimensions, in the domain in which quantum fluctuations are strong, are described for antiferromagnetic couplings by relativistic theories in which the methods of abelian or non-abelian bosonization are particularly powerful.
The main goal of this book is to familiarize the reader with a tool, the path integral, that not only offers an alternative point of view on quantum mechanics, but more importantly, under a generalized form, has also become the key to a deeper understanding of quantum field theory and its applications, extending from particle physics to phase transitions or properties of quantum gases. Path integrals are mathematical objects that can be considered as generalizations to an infinite number of variables, represented by paths, of usual integrals. They share the algebraic properties of usual integrals, but have new properties from the viewpoint of analysis. They are powerful tools for the study o...
Differential-algebraic equations (DAEs) provide an essential tool for system modeling and analysis within different fields of applied sciences and engineering. This book addresses modeling issues and analytical properties of DAEs, together with some applications in electrical circuit theory. Beginning with elementary aspects, the author succeeds in providing a self-contained and comprehensive presentation of several advanced topics in DAE theory, such as the full characterization of linear time-varying equations via projector methods or the geometric reduction of nonlinear systems. Recent results on singularities are extensively discussed. The book also addresses in detail differential-algebraic models of electrical and electronic circuits, including index characterizations and qualitative aspects of circuit dynamics. In particular, the reader will find a thorough discussion of the state/semistate dichotomy in circuit modeling. The state formulation problem, which has attracted much attention in the engineering literature, is cleverly tackled here as a reduction problem on semistate models.
This text fills a gap between undergraduate and more advanced texts on quantum field theory. It covers a range of renormalization methods with a clear physical interpretation, proceeds to the epsilon-expansion and ends with the first-order corrections to critical exponents beyond mean-field theory.