You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
In this book the author presents the Opial, Poincaré, Sobolev, Hilbert, and Ostrowski fractional differentiation inequalities. Results for the above are derived using three different types of fractional derivatives, namely by Canavati, Riemann-Liouville and Caputo. The univariate and multivariate cases are both examined. Each chapter is self-contained. The theory is presented systematically along with the applications. The application to information theory is also examined. This monograph is suitable for researchers and graduate students in pure mathematics. Applied mathematicians, engineers, and other applied scientists will also find this book useful.
This book covers problems involving a variety of fractional differential equations, as well as some involving the generalized Hilfer fractional derivative, which unifies the Riemann-Liouville and Caputo fractional derivatives. The authors highlight the existence, uniqueness, and stability results for various classes of fractional differential equations based on the most recent research in the area. The book discusses the classic and novel fixed point theorems related to the measure of noncompactness in Banach spaces and explains how to utilize them as tools. The authors build each chapter upon the previous one, helping readers to develop their understanding of the topic. The book includes illustrated results, analysis, and suggestions for further study.
This invaluable monograph is devoted to a rapidly developing area on the research of qualitative theory of fractional ordinary and partial differential equations. It provides the readers the necessary background material required to go further into the subject and explore the rich research literature. The tools used include many classical and modern nonlinear analysis methods such as fixed point theory, measure of noncompactness method, topological degree method, the technique of Picard operators, critical point theory and semigroup theory. Based on the research work carried out by the authors and other experts during the past seven years, the contents are very recent and comprehensive.In this edition, two new topics have been added, that is, fractional impulsive differential equations, and fractional partial differential equations including fractional Navier-Stokes equations and fractional diffusion equations.
Applications of Fractional Calculus to Modeling in Dynamics and Chaos aims to present novel developments, trends, and applications of fractional-order derivatives with power law and Mittag-Leffler kernel in the areas of chemistry, mechanics, chaos, epidemiology, fluid mechanics, modeling, and engineering. Non-singular and non-local fractional-order derivatives have been applied in different chapters to describe complex problems. The book offers theory and practical applications for the solutions of real-life problems and will be of interest to graduate-level students, educators, researchers, and scientists interested in mathematical modeling and its diverse applications. Features Discusses real-world problems, theory, and applications Covers new developments and advances in the various areas of nonlinear dynamics, signal processing, and chaos Suitable to teach master’s and/or PhD-level graduate students, and can be used by researchers, from any field of the social, health, and physical sciences
This accessible monograph is devoted to a rapidly developing area on the research of qualitative theory of fractional ordinary differential equations and evolution equations. It is self-contained and unified in presentation, and provides the readers the necessary background material required to go further into the subject and explore the rich research literature. The tools used include many classical and modern nonlinear analysis methods such as fixed point theory, measure of noncompactness method, topological degree method, Picard operators technique, critical point theory and semigroups theory. This book is based on the research work done so far by the author and other experts, and contain...
This book deals with the existence and stability of solutions to initial and boundary value problems for functional differential and integral equations and inclusions involving the Riemann-Liouville, Caputo, and Hadamard fractional derivatives and integrals. A wide variety of topics is covered in a mathematically rigorous manner making this work a valuable source of information for graduate students and researchers working with problems in fractional calculus. Contents Preliminary Background Nonlinear Implicit Fractional Differential Equations Impulsive Nonlinear Implicit Fractional Differential Equations Boundary Value Problems for Nonlinear Implicit Fractional Differential Equations Boundary Value Problems for Impulsive NIFDE Integrable Solutions for Implicit Fractional Differential Equations Partial Hadamard Fractional Integral Equations and Inclusions Stability Results for Partial Hadamard Fractional Integral Equations and Inclusions Hadamard–Stieltjes Fractional Integral Equations Ulam Stabilities for Random Hadamard Fractional Integral Equations
Automated Drug Delivery in Anesthesia provides a full review of available tools and methods on the drug delivery of anesthesia, bridging the gap between academic development, research and clinical practice. The book takes an interdisciplinary approach, pulling information about tools developed in other disciplines such as mathematics, physics, biology and system engineering and applying them to drug delivery. The book's authors discuss the missing element of complete regulatory loop of anesthesia: the sensor and model for pain pathway assessment. This is the only book which focuses specifically on the delivery of anesthesia.
"Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media" presents applications of fractional calculus, integral and differential equations of non-integer orders in describing systems with long-time memory, non-local spatial and fractal properties. Mathematical models of fractal media and distributions, generalized dynamical systems and discrete maps, non-local statistical mechanics and kinetics, dynamics of open quantum systems, the hydrodynamics and electrodynamics of complex media with non-local properties and memory are considered. This book is intended to meet the needs of scientists and graduate students in physics, mechanics and applied mathematics who are interested in electrodynamics, statistical and condensed matter physics, quantum dynamics, complex media theories and kinetics, discrete maps and lattice models, and nonlinear dynamics and chaos. Dr. Vasily E. Tarasov is a Senior Research Associate at Nuclear Physics Institute of Moscow State University and an Associate Professor at Applied Mathematics and Physics Department of Moscow Aviation Institute.
This monograph is devoted to the existence and stability (Ulam-Hyers-Rassias stability and asymptotic stability) of solutions for various classes of functional differential equations or inclusions involving the Hadamard or Hilfer fractional derivative. Some equations present delay which may be finite, infinite, or state-dependent. Others are subject to impulsive effect which may be fixed or non-instantaneous.Readers will find the book self-contained and unified in presentation. It provides the necessary background material required to go further into the subject and explores the rich research literature in detail. Each chapter concludes with a section devoted to notes and bibliographical rem...
This book has two main objectives, the first of which is to extend the power of numerical Fourier analysis and to show by means of theoretical examples and numerous concrete applications that when computing discrete Fourier transforms of periodic and non periodic functions, the usual kernel matrix of the Fourier transform, the discrete Fourier transform (DFT), should be replaced by another kernel matrix, the eXtended Fourier transform (XFT), since the XFT matrix appears as a convergent quadrature of a more general transform, the fractional Fourier transform. In turn, the book’s second goal is to present the XFT matrix as a finite-dimensional transformation that links certain discrete operators in the same way that the corresponding continuous operators are related by the Fourier transform, and to show that the XFT matrix accordingly generates sequences of matrix operators that represent continuum operators, and which allow these operators to be studied from another perspective.