You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This text covers a broad spectrum of topics pertinent to the management of incinerator residues. Background information includes a history of incineration, and the influence of municipal waste composition, incinerator type air pollution control technologies on residue quality. Physical, chemical and leaching characteristics for the various ash streams are described, along with recommended sampling and evaluation methodologies. Residue handling and management options, including, treatment utilisation and disposal are also discussed in detail.
The collection, transportation and subsequent processing of waste materials is a vast field of study which incorporates technical, social, legal, economic, environmental and regulatory issues. Common waste management practices include landfilling, biological treatment, incineration, and recycling – all boasting advantages and disadvantages. Waste management has changed significantly over the past ten years, with an increased focus on integrated waste management and life-cycle assessment (LCA), with the aim of reducing the reliance on landfill with its obvious environmental concerns in favour of greener solutions. With contributions from more than seventy internationally known experts prese...
The first book on novel products derived from the new generation of combustion ashes, Combustion Residues —Sustainable Applications discusses the nature of ashes derived from coal co-combustion, biomass, and other fuels in traditional and stand-alone power plants and municipal waste incinerators. In addition, the book examines the development of novel commercial products incorporating such ashes, including the importance of technical and environmental standards, marketing strategies, and promotion.
The purpose of the symposium was to present recent advances in characterization and control of odour and volatile organic compound emissions in the atmosphere, and to contribute to the state-of-the-art of measurement and sampling tools, impact prediction methods and abatement techniques. Topics covered were:Legislative aspectsEmission characterizationAbatement technologies, both recuperative and destructive andReduction methods.Apart from the global problems of climate, all aspects relating to the workplace environment and official regulations were discussed.
This handbook is concerned with developing principles and standards for the safe disposal of solid radioactive wastes by burial deep in the Earth's crust. Radioactive wastes have focussed thinking on long-term environmental protection issues in an unprecedented way. Consequently, the way in which principles and standards are set, and the thinking behind this, is of wider interest than to the nuclear field alone. The issues are not just technical and scientific. There is also a much wider philosophical context to the debate, centering on ethics, human values and the expectations of society.In this handbook it is intended that all theses issues are brought together, suggesting appropriate ways forward in each area, culminating in a proposed structure for safety regulations. It also aims to provide a detailed discussion of some of the most difficult logical an ethical issues facing those wishing to dispose of long-lived radioactive wastes.
Environmental biotechnology is an emerging field of scientific and technological investigations that is truly global. Popular recognition is high for the environmental problems being faced and solved by biotechnology methods. This book presents selected papers from the 3rd International Symposium of the International Society for Environmental Biotechnology, held in Boston in July 1996. The following topics are covered: metals, mine drainage, removal and toxicity; waste treatment/monitoring; bioremediation; water quality; biodegradation; and local, national and international issues in biotechnology.
Written to meet the requirements of engineers working in construction and concrete manufacturing, Mineral Admixtures in Cement and Concrete focuses on how to make more workable and durable concrete using mineral admixtures. In particular, it covers pulverized fuel ash (PFA), blast furnace slag (BFS), silica fume (SF), rice husk ash (RHA), and metak
Volume 1: Concepts, Methodology and Chemical Analysis. This 3-volume reference presents the latest findings in impact assessment of recycled hazardous waste materials on surface and ground waters. Topics covered include chemodynamics, toxicology, modeling and information systems. The book serves as a practical guide for the monitoring, design, management, or conduct of environmental impact assessment. Each volume contains the table of contents of all volumes.
Preface When you write a book like this after ten years' working as an environmental specialist, you end up with something that reflects your career. Of course, when I started working at the Ministry of the Environment in the Netherlands, I could not foresee that I would now be at TNO, nor that I would have performed research into chlorine, PVC, waste, etc. , that would come to form the basis for this book. But step by step, with some coincidence and with the support of several people - who were probably unaware of the crucial role that, with hindsight, they played - I arrived at a position where I could start to consider this enterprise. At this point I shall try something dangerous - thanking a few of those people who gave that support. At the same time, it is obvious that I cannot mention them all. I hope that those whom I do not mention will forgive me. A first, crucial moment in this sequence of events came quite soon after I joined TNO in 1990. Just a few weeks later, all the senior staff in my section decided to leave in order to set up their own company. I decided to stay at TNO. As a consequence, I had to manage it on my own.
This book covers a broad group of wastes, from biowaste to hazardous waste, but primarily the largest (by mass and volume) group of wastes that are not hazardous, but also are not inert, and are problematic for three major reasons: (1) they are difficult to manage because of their volume: usually they are used in civil engineering as a common fill etc., where they are exposed to environmental conditions almost the same way as at disposal sites; (2) they are not geochemically stable and in the different periods of environmental exposure undergo transformations that might add hazardous properties to the material that are not displayed when it is freshly generated; (3) many designers and researchers in different countries involved in waste management are often not aware of time-delayed adverse environmental impact of some large-volume waste, and also do not consider some positive properties that may extend the area of their environmentally beneficial application.