Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Lectures on Elementary Mathematics
  • Language: en
  • Pages: 178

Lectures on Elementary Mathematics

One of the 18th century's greatest mathematicians delivered these lectures at a training school for teachers. An exemplar among elementary expositions, they combine original ideas and elegant expression. 1898 edition.

Classical Mechanics
  • Language: en
  • Pages: 364

Classical Mechanics

* Offers a rigorous mathematical treatment of mechanics as a text or reference * Revisits beautiful classical material, including gyroscopes, precessions, spinning tops, effects of rotation of the Earth on gravity motions, and variational principles * Employs mathematics not only as a "unifying" language, but also to exemplify its role as a catalyst behind new concepts and discoveries

Encyclopaedia of Mathematics
  • Language: en
  • Pages: 952

Encyclopaedia of Mathematics

  • Type: Book
  • -
  • Published: 2013-11-11
  • -
  • Publisher: Springer

None

Classical and Celestial Mechanics
  • Language: en
  • Pages: 408

Classical and Celestial Mechanics

This book brings together a number of lectures given between 1993 and 1999 as part of a special series hosted by the Federal University of Pernambuco, in which internationally established researchers came to Recife, Brazil, to lecture on classical or celestial mechanics. Because of the high quality of the results and the general interest in the lecturers' topics, the editors have assembled nine of the lectures here in order to make them available to mathematicians and students around the world. The material presented includes a good balance of pure and applied research and of complete and incomplete results. Bringing together material that is otherwise quite scattered in the literature and i...

Encyclopaedia of Mathematics
  • Language: en
  • Pages: 540

Encyclopaedia of Mathematics

This ENCYCLOPAEDIA OF MATHEMATICS aims to be a reference work for all parts of mathe matics. It is a translation with updates and editorial comments of the Soviet Mathematical Encyclopaedia published by 'Soviet Encyclopaedia Publishing House' in five volumes in 1977-1985. The annotated translation consists of ten volumes including a special index volume. There are three kinds of articles in this ENCYCLOPAEDIA. First of all there are survey-type articles dealing with the various main directions in mathematics (where a rather fine subdivi sion has been used). The main requirement for these articles has been that they should give a reasonably complete up-to-date account of the current state of ...

Topology, Calculus and Approximation
  • Language: en
  • Pages: 383

Topology, Calculus and Approximation

  • Type: Book
  • -
  • Published: 2017-04-04
  • -
  • Publisher: Springer

Presenting basic results of topology, calculus of several variables, and approximation theory which are rarely treated in a single volume, this textbook includes several beautiful, but almost forgotten, classical theorems of Descartes, Erdős, Fejér, Stieltjes, and Turán. The exposition style of Topology, Calculus and Approximation follows the Hungarian mathematical tradition of Paul Erdős and others. In the first part, the classical results of Alexandroff, Cantor, Hausdorff, Helly, Peano, Radon, Tietze and Urysohn illustrate the theories of metric, topological and normed spaces. Following this, the general framework of normed spaces and Carathéodory's definition of the derivative are sh...

History of Continued Fractions and Padé Approximants
  • Language: en
  • Pages: 556

History of Continued Fractions and Padé Approximants

The history of continued fractions is certainly one of the longest among those of mathematical concepts, since it begins with Euclid's algorithm for the great est common divisor at least three centuries B.C. As it is often the case and like Monsieur Jourdain in Moliere's "Ie bourgeois gentilhomme" (who was speak ing in prose though he did not know he was doing so), continued fractions were used for many centuries before their real discovery. The history of continued fractions and Pade approximants is also quite im portant, since they played a leading role in the development of some branches of mathematics. For example, they were the basis for the proof of the tran scendence of 11' in 1882, an open problem for more than two thousand years, and also for our modern spectral theory of operators. Actually they still are of great interest in many fields of pure and applied mathematics and in numerical analysis, where they provide computer approximations to special functions and are connected to some convergence acceleration methods. Con tinued fractions are also used in number theory, computer science, automata, electronics, etc ...

Mécanique Analytique
  • Language: en
  • Pages: 444

Mécanique Analytique

Joseph-Louis Lagrange (1736-1813), one of the notable French mathematicians of the Revolutionary period, is remembered for his work in the fields of analysis, number theory and mechanics. Like Laplace and Legendre, Lagrange was assisted by d'Alembert, and it was on the recommendation of the latter and the urging of Frederick the Great himself that Lagrange succeeded Euler as the director of mathematics at the Prussian Academy of Sciences in Berlin. The two-volume Mécanique analytique was first published in 1788; the edition presented here is that of 1811-15, revised by the author before his death. In this work, claimed to be the most important on classical mechanics since Newton, Lagrange developed the law of virtual work, from which single principle the whole of solid and fluid mechanics can be derived.

Notes on Hamiltonian Dynamical Systems
  • Language: en
  • Pages: 473

Notes on Hamiltonian Dynamical Systems

Introduces Hamiltonian dynamics from the very beginning, culminating in the most important recent results: Kolmogorov's and Nekhoroshev's.

Theory of Orbits
  • Language: en
  • Pages: 402

Theory of Orbits

Half a century ago, S. Chandrasekhar wrote these words in the preface to his l celebrated and successful book: In this monograph an attempt has been made to present the theory of stellar dy namics as a branch of classical dynamics - a discipline in the same general category as celestial mechanics. [ ... J Indeed, several of the problems of modern stellar dy namical theory are so severely classical that it is difficult to believe that they are not already discussed, for example, in Jacobi's Vorlesungen. Since then, stellar dynamics has developed in several directions and at var ious levels, basically three viewpoints remaining from which to look at the problems encountered in the interpretation of the phenomenology. Roughly speaking, we can say that a stellar system (cluster, galaxy, etc.) can be con sidered from the point of view of celestial mechanics (the N-body problem with N » 1), fluid mechanics (the system is represented by a material con tinuum), or statistical mechanics (one defines a distribution function for the positions and the states of motion of the components of the system).