You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The ability to understand and control the unique properties of interfaces has created an entirely new field of magnetism which already has a profound impact in technology and is providing the basis for a revolution in electronics. The last decade has seen dramatic progress in the development of magnetic devices for information technology but also in the basic understanding of the physics of magnetic nanostructures. This volume describes thin film magnetic properties and methods for characterising thin film structure topics that underpin the present 'spintronics' revolution in which devices are based on combined magnetic materials and semiconductors. Volume IV deals with the fundamentals of spintronics: magnetoelectronic materials, spin injection and detection, micromagnetics and the development of magnetic random access memory based on GMR and tunnel junction devices. Together these books provide readers with a comprehensive account of an exciting and rapidly developing field. The treatment is designed to be accessible both to newcomers and to experts already working in this field who would like to get a better understanding of this very diversified area of research.
The development of new materials is recognized as one of the major elements in the overall technological evolution that must go on in order to sustain and even improve the quality of life for citizens of all nations. There are many components to this development, but one is to achieve a better understanding of the properties of materials using the most sophisticated scientific tools that are available. As condensed matter physicists and materials scientists work toward this goal, they find that it is useful to divide their efforts and focus on specific areas, because certain analytical and theoretical techniques will be more useful for the study of one class of materials than another. One su...
Between the area known as surface science (which mainly deals with single crystal surfaces) and the vast area of the surface properties of dispersed solids (knowledge of which is widely applied in catalysis and materials science) there is still a remarkably wide, although gradually decreasing, gap. Because fundamental physico-chemical problems are involved, this borderline area needs to be explored. With this objective, the Trieste meeting brought together specialists with a variety of origins and backgrounds, with the aim of stimulating the growth of our knowledge in this area.This proceedings volume contains ninety-three papers, comprising plenary lectures, short communications, and poster contributions on the applications of physical and theoretical methods to perfect and dispersed (microcrystalline and amorphous) metals, oxides, and mixed systems. Special emphasis is given to metal-support interfaces.The book thus provides a wealth of up-to-date information on a topic of current interest which will be of value to researchers who use chemical and/or physical methods for the study of surfaces.
This book contains six chapters on central topics in materials science. Each is written by specialists and gives a state-of-art presentation of the subject for graduate students and scientists not necessarily working in that field. Computer simulations of new materials, theory and experimental work are all extensively discussed. Most of the topics discussed have a bearing on nanomaterials and nanodevices.
It is common practice today to use the term "alloy" in connection with specific classes of materials, with prominence given to metals and semiconductors. However, there is good justification for considering alloys in a unified manner based on properties rather than types of materials because, after all, to alloy means to mix. The scientific aspects of mixing together different materials has a very long history going back to early attempts to understand and control materials behavior for the service of mankind. The case for using the scientific term "alloy" to mean any material consisting of more than one element can be based on the following two considerations. First, many alloys are mixture...
The aim of this volume is to provide scientists with a comprehensive summary of new research areas in the activation of carbon monoxide, as one of the most reactive molecules, and in its applications. In order to understand the variety of the reactivity of CO, a quantum-chemical approach helps the reader to understand the binding state of CO to the solid surface (Chapter 1). The structure of the adsorbed CO can be better understood by examining its reactivity towards single crystals in the absence and in the presence of promoters (Chapter 2). The first approach in the reactivity study is that of studying catalytic activity of single crystals and structure sensitivity which are summarized in ...
Nanotechnology Provides comprehensive coverage of the dominant technology of the 21st century Written by a truly international list of contributors.