You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This third volume concludes our introduction to analysis, wherein we ?nish laying the groundwork needed for further study of the subject. As with the ?rst two, this volume contains more material than can treated in a single course. It is therefore important in preparing lectures to choose a suitable subset of its content; the remainder can be treated in seminars or left to independent study. For a quick overview of this content, consult the table of contents and the chapter introductions. Thisbookisalsosuitableasbackgroundforothercoursesorforselfstudy. We hope that its numerous glimpses into more advanced analysis will arouse curiosity and so invite students to further explore the beauty and...
"This textbook provides an outstanding introduction to analysis. It is distinguished by its high level of presentation and its focus on the essential.'' (Zeitschrift für Analysis und ihre Anwendung 18, No. 4 - G. Berger, review of the first German edition) "One advantage of this presentation is that the power of the abstract concepts are convincingly demonstrated using concrete applications.'' (W. Grölz, review of the first German edition)
Based on the lnternational Conference on Evolution Equations held recently at Louisiana State University, Baton Rouge, this work presents significant new research papers and state-of-the-art surveys on evolution equations and related fields. Important applications of evolution equations to problems in quantum theory, fluid dynamics, engineering, and biology are highlighted.
This overview of some of the main results and recent developments in nonlinear water waves presents fundamental aspects of the field and discusses several important topics of current research interest. It contains selected information about water-wave motion for which advanced mathematical study can be pursued, enabling readers to derive conclusions that explain observed phenomena to the greatest extent possible. The author discusses the underlying physical factors of such waves and explores the physical relevance of the mathematical results that are presented. The material is an expanded version of the author's lectures delivered at the NSF-CBMS Regional Research Conference in the Mathematical Sciences organized by the Mathematics Department of the University of Texas-Pan American in 2010.
For the past several decades, the study of free boundary problems has been a very active subject of research occurring in a variety of applied sciences. What these problems have in common is their formulation in terms of suitably posed initial and boundary value problems for nonlinear partial differential equations. Such problems arise, for example, in the mathematical treatment of the processes of heat conduction, filtration through porous media, flows of non-Newtonian fluids, boundary layers, chemical reactions, semiconductors, and so on. The growing interest in these problems is reflected by the series of meetings held under the title "Free Boundary Problems: Theory and Applications" (Ox ...
In this masterful study, the author sets forth a unique treatment of the stability and instability of the periodic equilibria of partial differential equations as they relate to the notion of direct integrals. His results, and to a large extent his methods are new. Although he aims this work at theory rather than applications, once the theoretical framework is built, applications emerge with ease. Readers with some basis in functional analysis-notably semigroups-and measure theory can strengthen their background through its introductory material on direct integrals and its proofs worked out in detail. In Stability, Instability and Direct Integrals, applied and pure mathematicians and theoretical physicists can discover from an acknowledged innovator the most recent results of research in this active and expanding field.
Philippe Bénilan was a most original and charismatic mathematician who had a deep and decisive impact on the theory of Nonlinear Evolution Equations. Dedicated to him, Nonlinear Evolution Equations and Related Topics contains research papers written by highly distinguished mathematicians. They are all related to Philippe Benilan's work and reflect the present state of this most active field. The contributions cover a wide range of nonlinear and linear equations.
This volume contains the proceedings of the International Conference on Vorticity, Rotation and Symmetry (IV)—Complex Fluids and the Issue of Regularity, held from May 8–12, 2017, in Luminy, Marseille, France. The papers cover topics in mathematical fluid mechanics ranging from the classical regularity issue for solutions of the 3D Navier-Stokes system to compressible and non-Newtonian fluids, MHD flows and mixtures of fluids. Topics of different kinds of solutions, boundary conditions, and interfaces are also discussed.
This book offers the first systematic review of the structuralism of physical theories. Particular emphasis is placed on the inclusion of empirical imprecision into formal reconstructions of theories. The proposed measure of imprecision allows for a topological comparison of theories. Considering the ongoing debates on the nature of the thermodynamic limit in statistical mechanics, as well as on limit relations between classical and quantum mechanics, the author asserts that the Bourbaki-style structuralism, together with E. Scheibe's theory of reduction, is the best choice for reconstructing and analyzing the related questions of reduction and emergence. Readers will appreciate the critical overview of the main positions in philosophy of science, examined with particular attention to their applicability to current problems of fundamental theories of physics.
* Devoted to the motion of surfaces for which the normal velocity at every point is given by the mean curvature at that point; this geometric heat flow process is called mean curvature flow. * Mean curvature flow and related geometric evolution equations are important tools in mathematics and mathematical physics.