You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
From rainbows, river meanders, and shadows to spider webs, honeycombs, and the markings on animal coats, the visible world is full of patterns that can be described mathematically. Examining such readily observable phenomena, this book introduces readers to the beauty of nature as revealed by mathematics and the beauty of mathematics as revealed in nature. Generously illustrated, written in an informal style, and replete with examples from everyday life, Mathematics in Nature is an excellent and undaunting introduction to the ideas and methods of mathematical modeling. It illustrates how mathematics can be used to formulate and solve puzzles observed in nature and to interpret the solutions....
How heavy is that cloud? Why can you see farther in rain than in fog? Why are the droplets on that spider web spaced apart so evenly? If you have ever asked questions like these while outdoors, this book isfor your. An entertaining and informative collection of fascinating puzzles from the natural world around us, A Mathematical Nature Walk will delight anyone who loves nature or math or both. John Adam presents ninety-six questions about natural phenomena and then shows how to answer them using mostly basic mathematics. Many of the problems are illustrated, and the book also has answers, a glossary of terms, and a list of patterns found in nature. Regardless of math background, readers will learn from the informal descriptions of the problems and gain a new appreciation of the beauty of nature and the mathematics that lies behind it. --
What mathematical modeling uncovers about life in the city X and the City, a book of diverse and accessible math-based topics, uses basic modeling to explore a wide range of entertaining questions about urban life. How do you estimate the number of dental or doctor's offices, gas stations, restaurants, or movie theaters in a city of a given size? How can mathematics be used to maximize traffic flow through tunnels? Can you predict whether a traffic light will stay green long enough for you to cross the intersection? And what is the likelihood that your city will be hit by an asteroid? Every math problem and equation in this book tells a story and examples are explained throughout in an informal and witty style. The level of mathematics ranges from precalculus through calculus to some differential equations, and any reader with knowledge of elementary calculus will be able to follow the materials with ease. There are also some more challenging problems sprinkled in for the more advanced reader. Filled with interesting and unusual observations about how cities work, X and the City shows how mathematics undergirds and plays an important part in the metropolitan landscape.
This is the fascinating account of the last public hanging, on 16th October 1835 in Inverness, the capital of the Scottish Highlands. The man on the gallows was John Adam, known as The Mulbuie Murderer. Graham Clark uncovers who John Adam was and his motives for the murder of one of the two women with whom he was in relations - his intention to dispense with the woman who was the richest - a classic case of a love triangle ending in tragic circumstances. There was no doubt of John Adams' guilt, although most of the evidence was circumstantial. The author traces his early life, and the traits that led to his execution. The trial was riddled with ineptitude, confusion and bizarre practices - such as a medieval interrogation known as the ordeal and the use of the medical science of phrenology - detection was in its infancy in the 19th century. This is a deeply researched account of an extraordinary murder, trial and execution. The book is illustrated with over 50 unique photographs and facsimiles.
This unique book gathers various scientific and mathematical approaches to and descriptions of the natural and physical world stemming from a broad range of mathematical areas – from model systems, differential equations, statistics, and probability – all of which scientifically and mathematically reveal the inherent beauty of natural and physical phenomena. Topics include Archimedean and Non-Archimedean approaches to mathematical modeling; thermography model with application to tungiasis inflammation of the skin; modeling of a tick-Killing Robot; various aspects of the mathematics for Covid-19, from simulation of social distancing scenarios to the evolution dynamics of the coronavirus i...
Profiles John Adams, an influential patriot during the American Revolution who became the nation's first vice president and second president.
This one-of-a-kind book presents many of the mathematical concepts, structures, and techniques used in the study of rays, waves, and scattering. Panoramic in scope, it includes discussions of how ocean waves are refracted around islands and underwater ridges, how seismic waves are refracted in the earth's interior, how atmospheric waves are scattered by mountains and ridges, how the scattering of light waves produces the blue sky, and meteorological phenomena such as rainbows and coronas. Rays, Waves, and Scattering is a valuable resource for practitioners, graduate students, and advanced undergraduates in applied mathematics, theoretical physics, and engineering. Bridging the gap between ad...
Guesstimation is a book that unlocks the power of approximation--it's popular mathematics rounded to the nearest power of ten! The ability to estimate is an important skill in daily life. More and more leading businesses today use estimation questions in interviews to test applicants' abilities to think on their feet. Guesstimation enables anyone with basic math and science skills to estimate virtually anything--quickly--using plausible assumptions and elementary arithmetic. Lawrence Weinstein and John Adam present an eclectic array of estimation problems that range from devilishly simple to quite sophisticated and from serious real-world concerns to downright silly ones. How long would it t...
Mathematical Modeling and Immunology An enormous amount of human effort and economic resources has been directed in this century to the fight against cancer. The purpose, of course, has been to find strategies to overcome this hard, challenging and seemingly endless struggle. We can readily imagine that even greater efforts will be required in the next century. The hope is that ultimately humanity will be successful; success will have been achieved when it is possible to activate and control the immune system in its competition against neoplastic cells. Dealing with the above-mentioned problem requires the fullest pos sible cooperation among scientists working in different fields: biology, i...
None