You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This is a version of Gevrey's classical treatise on the heat equations. Included in this volume are discussions of initial and/or boundary value problems, numerical methods, free boundary problems and parameter determination problems. The material is presented as a monograph and/or information source book. After the first six chapters of standard classical material, each chapter is written as a self-contained unit except for an occasional reference to elementary definitions, theorems and lemmas in previous chapters.
The present volume contains manuscripts of lectures or topics related to the lectures which were given at the conference on "Inverse Problems" at the mathematical Research Institute at Oberwolfach. The conference took place during the week of May 18-24, 1986, and was managed by the editors. Recalling Professor Joseph Keller's paper entitled Inverse Problems, American Mathematical Monthly, 83 (1976), we give two direct quotes. "We call two problems inverses of one another if the formulation of each involves all or part of the solution of the other. Often, for historical reasons, one of the two problems has been studied extensively for some time, while the other is newer and not so well unders...
This graduate textbook provides a self-contained introduction to modern mathematical theory on fractional differential equations. It addresses both ordinary and partial differential equations with a focus on detailed solution theory, especially regularity theory under realistic assumptions on the problem data. The text includes an extensive bibliography, application-driven modeling, extensive exercises, and graphic illustrations throughout to complement its comprehensive presentation of the field. It is recommended for graduate students and researchers in applied and computational mathematics, particularly applied analysis, numerical analysis and inverse problems.
Model theory is concerned with the notions of definition, interpretation and structure in a very general setting, and is applied to a wide range of other areas such as set theory, geometry, algebra and computer science. This book provides an integrated introduction to model theory for graduate students.
A comprehensive introduction to convex bodies giving full proofs for some deeper theorems which have never previously been brought together.
Provides a foundation for probability based on game theory rather than measure theory. A strong philosophical approach with practical applications. Presents in-depth coverage of classical probability theory as well as new theory.
Singular perturbations occur when a small coefficient affects the highest order derivatives in a system of partial differential equations. From the physical point of view singular perturbations generate in the system under consideration thin layers located often but not always at the boundary of the domains that are called boundary layers or internal layers if the layer is located inside the domain. Important physical phenomena occur in boundary layers. The most common boundary layers appear in fluid mechanics, e.g., the flow of air around an airfoil or a whole airplane, or the flow of air around a car. Also in many instances in geophysical fluid mechanics, like the interface of air and eart...
Inverse and Ill-Posed Problems is a collection of papers presented at a seminar of the same title held in Austria in June 1986. The papers discuss inverse problems in various disciplines; mathematical solutions of integral equations of the first kind; general considerations for ill-posed problems; and the various regularization methods for integral and operator equations of the first kind. Other papers deal with applications in tomography, inverse scattering, detection of radiation sources, optics, partial differential equations, and parameter estimation problems. One paper discusses three topics on ill-posed problems, namely, the imposition of specified types of discontinuities on solutions...
The classical subjects of geometric probability and integral geometry, and the more modern one of stochastic geometry, are developed here in a novel way to provide a framework in which they can be studied. The author focuses on factorization properties of measures and probabilities implied by the assumption of their invariance with respect to a group, in order to investigate nontrivial factors. The study of these properties is the central theme of the book. Basic facts about integral geometry and random point process theory are developed in a simple geometric way, so that the whole approach is suitable for a nonspecialist audience. Even in the later chapters, where the factorization principles are applied to geometrical processes, the only prerequisites are standard courses on probability and analysis. The main ideas presented have application to such areas as stereology and geometrical statistics and this book will be a useful reference book for university students studying probability theory and stochastic geometry, and research mathematicians interested in this area.
Research in computational group theory, an active subfield of computational algebra, has emphasised three areas: finite permutation groups, finite solvable groups, and finitely presented groups. This book deals with the third of these areas. The author emphasises the connections with fundamental algorithms from theoretical computer science, particularly the theory of automata and formal languages, computational number theory, and computational commutative algebra. The LLL lattice reduction algorithm and various algorithms for Hermite and Smith normal forms from computational number theory are used to study the abelian quotients of a finitely presented group. The work of Baumslag, Cannonito and Miller on computing nonabelian polycyclic quotients is described as a generalisation of Buchberger's Gröbner basis methods to right ideals in the integral group ring of a polycyclic group. Researchers in computational group theory, mathematicians interested in finitely presented groups and theoretical computer scientists will find this book useful.