You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book focuses on Least Squares Support Vector Machines (LS-SVMs) which are reformulations to standard SVMs. LS-SVMs are closely related to regularization networks and Gaussian processes but additionally emphasize and exploit primal-dual interpretations from optimization theory. The authors explain the natural links between LS-SVM classifiers and kernel Fisher discriminant analysis. Bayesian inference of LS-SVM models is discussed, together with methods for imposing sparseness and employing robust statistics.The framework is further extended towards unsupervised learning by considering PCA analysis and its kernel version as a one-class modelling problem. This leads to new primal-dual support vector machine formulations for kernel PCA and kernel CCA analysis. Furthermore, LS-SVM formulations are given for recurrent networks and control. In general, support vector machines may pose heavy computational challenges for large data sets. For this purpose, a method of fixed size LS-SVM is proposed where the estimation is done in the primal space in relation to a Nyström sampling with active selection of support vectors. The methods are illustrated with several examples.
Machine learning is a relatively new field, without a unanimous definition. In many ways, actuaries have been machine learners. In both pricing and reserving, but also more recently in capital modelling, actuaries have combined statistical methodology with a deep understanding of the problem at hand and how any solution may affect the company and its customers. One aspect that has, perhaps, not been so well developed among actuaries is validation. Discussions among actuaries’ “preferred methods” were often without solid scientific arguments, including validation of the case at hand. Through this collection, we aim to promote a good practice of machine learning in insurance, considering the following three key issues: a) who is the client, or sponsor, or otherwise interested real-life target of the study? b) The reason for working with a particular data set and a clarification of the available extra knowledge, that we also call prior knowledge, besides the data set alone. c) A mathematical statistical argument for the validation procedure.
This text details advances in learning theory that relate to problems studied in neural networks, machine learning, mathematics and statistics.
This first of three volumes on credit risk management, providing a thorough introduction to financial risk management and modelling.
Algae Refinery: Up- and Downstream Processes offers complete coverage of algae refinery, including up- and downstream processes while proposing an integrated algal refinery for the advancement of existing technologies and summarizing the strategies and future perspectives of algal refinery. It provides a concise introduction to the algal science, biology, technology, and application of algae. It explains downstream and upstream steps of algal refinery for the production of algal biomass, with several social benefits. Features: Provides various aspects of algal bioprocess including upstream and downstream processes Explains the major research streams of algae structures and their pathways Covers algal-based CO2 capture technology Explores the potential applications of algae for socioeconomical benefits Deliberates algal bioremediation approach for clean and sustainable development
This book is based on the papers presented at the International Conference on Arti?cial Neural Networks, ICANN 2001, from August 21–25, 2001 at the - enna University of Technology, Austria. The conference is organized by the A- trian Research Institute for Arti?cal Intelligence in cooperation with the Pattern Recognition and Image Processing Group and the Center for Computational - telligence at the Vienna University of Technology. The ICANN conferences were initiated in 1991 and have become the major European meeting in the ?eld of neural networks. From about 300 submitted papers, the program committee selected 171 for publication. Each paper has been reviewed by three program committee m...
Regularization, Optimization, Kernels, and Support Vector Machines offers a snapshot of the current state of the art of large-scale machine learning, providing a single multidisciplinary source for the latest research and advances in regularization, sparsity, compressed sensing, convex and large-scale optimization, kernel methods, and support vector machines. Consisting of 21 chapters authored by leading researchers in machine learning, this comprehensive reference: Covers the relationship between support vector machines (SVMs) and the Lasso Discusses multi-layer SVMs Explores nonparametric feature selection, basis pursuit methods, and robust compressive sensing Describes graph-based regular...
The International Conferences on Arti?cial Neural Networks, ICANN, have been held annually since 1991 and over the years have become the major European meeting in neural networks. This proceedings volume contains all the papers presented at ICANN 2002, the 12th ICANN conference, held in August 28– 30, 2002 at the Escuela T ́ecnica Superior de Inform ́atica of the Universidad Aut ́onoma de Madrid and organized by its Neural Networks group. ICANN 2002 received a very high number of contributions, more than 450. Almost all papers were revised by three independent reviewers, selected among the more than 240 serving at this year’s ICANN, and 221 papers were ?nally selected for publication in these proceedings (due to space considerations, quite a few good contributions had to be left out). I would like to thank the Program Committee and all the reviewers for the great collective e?ort and for helping us to have a high quality conference.