You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
In Contributions to Automorphic Forms, Geometry, and Number Theory, Haruzo Hida, Dinakar Ramakrishnan, and Freydoon Shahidi bring together a distinguished group of experts to explore automorphic forms, principally via the associated L-functions, representation theory, and geometry. Because these themes are at the cutting edge of a central area of modern mathematics, and are related to the philosophical base of Wiles' proof of Fermat's last theorem, this book will be of interest to working mathematicians and students alike. Never previously published, the contributions to this volume expose the reader to a host of difficult and thought-provoking problems. Each of the extraordinary and notewor...
Herve Jacquet is one of the founders of the modern theory of automorphic representations and their associated $L$-functions. This volume represents a selection of his most influential papers not already available in book form. The volume contains papers on the $L$-function attached to a pair of representations of the general linear group. Thus, it completes Jacquet's papers on the subject (joint with Shalika and Piatetski-Shapiro) that can be found in the volume of selected works of Piatetski-Shapiro. In particular, two often quoted papers of Jacquet and Shalika on the classification of automorphic representations and a historically important paper of Gelbart and Jacquet on the functorial transfer from $GL(2)$ to $GL(3)$ are included. Another series of papers pertains to the relative trace formula introduced by Jacquet. This is a variant of the standard trace formula which is used to study the period integrals of automorphic forms. Nearly complete results are obtained for the period of an automorphic form over a unitary group.
This volume contains the proceedings of the conference on Representation Theory and Mathematical Physics, in honor of Gregg Zuckerman's 60th birthday, held October 24-27, 2009, at Yale University. Lie groups and their representations play a fundamental role in mathematics, in particular because of connections to geometry, topology, number theory, physics, combinatorics, and many other areas. Representation theory is one of the cornerstones of the Langlands program in number theory, dating to the 1970s. Zuckerman's work on derived functors, the translation principle, and coherent continuation lie at the heart of the modern theory of representations of Lie groups. One of the major unsolved pro...
This volume contains the proceedings of the conference Automorphic Forms and Related Geometry: Assessing the Legacy of I.I. Piatetski-Shapiro, held from April 23-27, 2012, at Yale University, New Haven, CT. Ilya I. Piatetski-Shapiro, who passed away on 21 February 2009, was a leading figure in the theory of automorphic forms. The conference attempted both to summarize and consolidate the progress that was made during Piatetski-Shapiro's lifetime by him and a substantial group of his co-workers, and to promote future work by identifying fruitful directions of further investigation. It was organized around several themes that reflected Piatetski-Shapiro's main foci of work and that have promis...
Studies the evolution of the large finite spatial systems in size-dependent time scales and compare them with the behavior of the infinite systems, which amounts to establishing the so-called finite system scheme. This title introduces the concept of a continuum limit in the hierarchical mean field limit.
This book is dedicated to Dennis Sullivan on the occasion of his 60th birthday. The framework of affine and hyperbolic laminations provides a unifying foundation for many aspects of conformal dynamics and hyperbolic geometry. The central objects of this approach are an affine Riemann surface lamination $\mathcal A$ and the associated hyperbolic 3-lamination $\mathcal H$ endowed with an action of a discrete group of isomorphisms. This action is properly discontinuous on $\mathcal H$, which allows one to pass to the quotient hyperbolic lamination $\mathcal M$. Our work explores natural ``geometric'' measures on these laminations. We begin with a brief self-contained introduction to the measure...
In particular, for b = 1 and λ = 0, we find a sharp condition on h such that the origin is a removable singularity for all non-negative solutions of [[eqref]]one, thus addressing an open question of Vázquez and Véron.
Complex symplectic spaces are non-trivial generalizations of the real symplectic spaces of classical analytical dynamics. This title presents a self-contained investigation of general complex symplectic spaces, and their Lagrangian subspaces, regardless of the finite or infinite dimensionality.
On the assumption that the $\Gamma$-orbits all have dimension equal to that of $\Gamma$, this title shows that there is a naturally defined $F$- and $\Gamma$-invariant measure $\nu$ of maximal entropy on $\Lambda$ (it is not assumed that the action of $\Gamma$ is free).