Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Contributions to Automorphic Forms, Geometry, and Number Theory
  • Language: en
  • Pages: 946

Contributions to Automorphic Forms, Geometry, and Number Theory

  • Type: Book
  • -
  • Published: 2004-03-11
  • -
  • Publisher: JHU Press

In Contributions to Automorphic Forms, Geometry, and Number Theory, Haruzo Hida, Dinakar Ramakrishnan, and Freydoon Shahidi bring together a distinguished group of experts to explore automorphic forms, principally via the associated L-functions, representation theory, and geometry. Because these themes are at the cutting edge of a central area of modern mathematics, and are related to the philosophical base of Wiles' proof of Fermat's last theorem, this book will be of interest to working mathematicians and students alike. Never previously published, the contributions to this volume expose the reader to a host of difficult and thought-provoking problems. Each of the extraordinary and notewor...

Grants and Awards for the Fiscal Year Ended ...
  • Language: en
  • Pages: 260

Grants and Awards for the Fiscal Year Ended ...

  • Type: Book
  • -
  • Published: 1980
  • -
  • Publisher: Unknown

None

Representation Theory and Mathematical Physics
  • Language: en
  • Pages: 404

Representation Theory and Mathematical Physics

This volume contains the proceedings of the conference on Representation Theory and Mathematical Physics, in honor of Gregg Zuckerman's 60th birthday, held October 24-27, 2009, at Yale University. Lie groups and their representations play a fundamental role in mathematics, in particular because of connections to geometry, topology, number theory, physics, combinatorics, and many other areas. Representation theory is one of the cornerstones of the Langlands program in number theory, dating to the 1970s. Zuckerman's work on derived functors, the translation principle, and coherent continuation lie at the heart of the modern theory of representations of Lie groups. One of the major unsolved pro...

Collected Works of Herve Jacquet
  • Language: en
  • Pages: 618

Collected Works of Herve Jacquet

Herve Jacquet is one of the founders of the modern theory of automorphic representations and their associated $L$-functions. This volume represents a selection of his most influential papers not already available in book form. The volume contains papers on the $L$-function attached to a pair of representations of the general linear group. Thus, it completes Jacquet's papers on the subject (joint with Shalika and Piatetski-Shapiro) that can be found in the volume of selected works of Piatetski-Shapiro. In particular, two often quoted papers of Jacquet and Shalika on the classification of automorphic representations and a historically important paper of Gelbart and Jacquet on the functorial transfer from $GL(2)$ to $GL(3)$ are included. Another series of papers pertains to the relative trace formula introduced by Jacquet. This is a variant of the standard trace formula which is used to study the period integrals of automorphic forms. Nearly complete results are obtained for the period of an automorphic form over a unitary group.

Arithmetic of Higher-Dimensional Algebraic Varieties
  • Language: en
  • Pages: 292

Arithmetic of Higher-Dimensional Algebraic Varieties

This text offers a collection of survey and research papers by leading specialists in the field documenting the current understanding of higher dimensional varieties. Recently, it has become clear that ideas from many branches of mathematics can be successfully employed in the study of rational and integral points. This book will be very valuable for researchers from these various fields who have an interest in arithmetic applications, specialists in arithmetic geometry itself, and graduate students wishing to pursue research in this area.

On Certain $L$-Functions
  • Language: en
  • Pages: 658

On Certain $L$-Functions

Illuminate various areas of the study of geometric, analytic, and number theoretic aspects of automorphic forms and their $L$-functions, and both local and global theory are addressed. Topics discussed in the articles include Langlands functoriality, the Rankin-Selberg method, the Langlands-Shahidi method, motivic Galois groups, Shimura varieties, orbital integrals, representations of $p$-adic groups, Plancherel formula and its consequences, and the Gross-Prasad conjecture.

Advances in the Theory of Automorphic Forms and Their $L$-functions
  • Language: en
  • Pages: 386

Advances in the Theory of Automorphic Forms and Their $L$-functions

This volume contains the proceedings of the workshop on “Advances in the Theory of Automorphic Forms and Their L-functions” held in honor of James Cogdell's 60th birthday, held from October 16–25, 2013, at the Erwin Schrödinger Institute (ESI) at the University of Vienna. The workshop and the papers contributed to this volume circle around such topics as the theory of automorphic forms and their L-functions, geometry and number theory, covering some of the recent approaches and advances to these subjects. Specifically, the papers cover aspects of representation theory of p-adic groups, classification of automorphic representations through their Fourier coefficients and their liftings, L-functions for classical groups, special values of L-functions, Howe duality, subconvexity for L-functions, Kloosterman integrals, arithmetic geometry and cohomology of arithmetic groups, and other important problems on L-functions, nodal sets and geometry.

Eisenstein Series and Automorphic $L$-Functions
  • Language: en
  • Pages: 218

Eisenstein Series and Automorphic $L$-Functions

This book presents a treatment of the theory of $L$-functions developed by means of the theory of Eisenstein series and their Fourier coefficients, a theory which is usually referred to as the Langlands-Shahidi method. The information gathered from this method, when combined with the converse theorems of Cogdell and Piatetski-Shapiro, has been quite sufficient in establishing a number of new cases of Langlands functoriality conjecture; at present, some of these cases cannot be obtained by any other method. These results have led to far-reaching new estimates for Hecke eigenvalues of Maass forms, as well as definitive solutions to certain problems in analytic and algebraic number theory. This...

Selected Works of Ilya Piatetski-Shapiro
  • Language: en
  • Pages: 852

Selected Works of Ilya Piatetski-Shapiro

This selection of papers of I. Piatetski-Shapiro represents almost 50 years of his mathematical activity. Included are many of his major papers in harmonic analysis, number theory, discrete groups, bounded homogeneous domains, algebraic geometry, automorphic forms, and automorphic $L$-functions. The papers in the volume are intended as a representative and accurate reflection of both the breadth and depth of Piatetski-Shapiro's work in mathematics. Some of his early works, such as those on the prime number theorem and on sets of uniqueness for trigonometric series, appear for the first time in English. Also included are several commentaries by his close colleagues. This volume offers an elegant representation of the contributions made by this renowned mathematician.

Automorphic Forms, Representations and $L$-Functions
  • Language: en
  • Pages: 334

Automorphic Forms, Representations and $L$-Functions

Contains sections on Reductive groups, representations, Automorphic forms and representations.