You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This concise textbook introduces the reader to advanced mathematical aspects of general relativity, covering topics like Penrose diagrams, causality theory, singularity theorems, the Cauchy problem for the Einstein equations, the positive mass theorem, and the laws of black hole thermodynamics. It emerged from lecture notes originally conceived for a one-semester course in Mathematical Relativity which has been taught at the Instituto Superior Técnico (University of Lisbon, Portugal) since 2010 to Masters and Doctorate students in Mathematics and Physics. Mostly self-contained, and mathematically rigorous, this book can be appealing to graduate students in Mathematics or Physics seeking specialization in general relativity, geometry or partial differential equations. Prerequisites include proficiency in differential geometry and the basic principles of relativity. Readers who are familiar with special relativity and have taken a course either in Riemannian geometry (for students of Mathematics) or in general relativity (for those in Physics) can benefit from this book.
“General Relativity Without Calculus” offers a compact but mathematically correct introduction to the general theory of relativity, assuming only a basic knowledge of high school mathematics and physics. Targeted at first year undergraduates (and advanced high school students) who wish to learn Einstein’s theory beyond popular science accounts, it covers the basics of special relativity, Minkowski space-time, non-Euclidean geometry, Newtonian gravity, the Schwarzschild solution, black holes and cosmology. The quick-paced style is balanced by over 75 exercises (including full solutions), allowing readers to test and consolidate their understanding.
Unlike many other texts on differential geometry, this textbook also offers interesting applications to geometric mechanics and general relativity. The first part is a concise and self-contained introduction to the basics of manifolds, differential forms, metrics and curvature. The second part studies applications to mechanics and relativity including the proofs of the Hawking and Penrose singularity theorems. It can be independently used for one-semester courses in either of these subjects. The main ideas are illustrated and further developed by numerous examples and over 300 exercises. Detailed solutions are provided for many of these exercises, making An Introduction to Riemannian Geometry ideal for self-study.
Popular Science gives our readers the information and tools to improve their technology and their world. The core belief that Popular Science and our readers share: The future is going to be better, and science and technology are the driving forces that will help make it better.
The book aims to give a mathematical presentation of the theory of general relativity (that is, spacetime-geometry-based gravitation theory) to advanced undergraduate mathematics students. Mathematicians will find spacetime physics presented in the definition-theorem-proof format familiar to them. The given precise mathematical definitions of physical notions help avoiding pitfalls, especially in the context of spacetime physics describing phenomena that are counter-intuitive to everyday experiences.In the first part, the differential geometry of smooth manifolds, which is needed to present the spacetime-based gravitation theory, is developed from scratch. Here, many of the illustrating exam...
“One of the best popular accounts of how Einstein and his followers have been trying to explain the universe for decades” (Kirkus Reviews, starred review). Physicists have been exploring, debating, and questioning the general theory of relativity ever since Albert Einstein first presented it in 1915. This has driven their work to unveil the universe’s surprising secrets even further, and many believe more wonders remain hidden within the theory’s tangle of equations, waiting to be exposed. In this sweeping narrative of science and culture, an astrophysicist brings general relativity to life through the story of the brilliant physicists, mathematicians, and astronomers who have taken ...
The present volume aims to be a comprehensive survey on the derivation of the equations of motion, both in General Relativity as well as in alternative gravity theories. The topics covered range from the description of test bodies, to self-gravitating (heavy) bodies, to current and future observations. Emphasis is put on the coverage of various approximation methods (e.g., multipolar, post-Newtonian, self-force methods) which are extensively used in the context of the relativistic problem of motion. Applications discussed in this volume range from the motion of binary systems -- and the gravitational waves emitted by such systems -- to observations of the galactic center. In particular the impact of choices at a fundamental theoretical level on the interpretation of experiments is highlighted. This book provides a broad and up-do-date status report, which will not only be of value for the experts working in this field, but also may serve as a guideline for students with background in General Relativity who like to enter this field.
This volume contains contributed papers authored by participants of a Conference on Differential Equations and Dynamical Systems which was held at the Instituto Superior Tecnico (Lisbon, Portugal). The conference brought together a large number of specialists in the area of differential equations and dynamical systems and provided an opportunity to celebrate Professor Waldyr Oliva's 70th birthday, honoring his fundamental contributions to the field. The volume constitutes anoverview of the current research over a wide range of topics, extending from qualitative theory for (ordinary, partial or functional) differential equations to hyperbolic dynamics and ergodic theory.
I wrote this book because I wanted to learn more about interstel lar flight. Not the Star Trek notion of tearing around the Galaxy in a huge spaceship-that was obviously beyond existing tech nology-but a more realistic mission. In 1989 I had videotaped Voyager 2's encounter with Neptune and watched the drama of robotic exploration over and over again. I started to wonder whether we could do something similar with Alpha Centauri, the nearest star to the Sun. Everyone seemed to agree that manned flight to the stars was out of the question, if not permanently then for the indefinitely foreseeable future. But surely we could do something with robotics. And if we could figure out a theoretical wa...
This book contains contributions from the Spanish Relativity Meeting, ERE 2012, held in Guimarães, Portugal, September 2012. It features more than 70 papers on a range of topics in general relativity and gravitation, from mathematical cosmology, numerical relativity and black holes to string theory and quantum gravity. Under the title "Progress in Mathematical Relativity, Gravitation and Cosmology," ERE 2012 was attended by an exceptional international list of over a hundred participants from the five continents and over forty countries. ERE is organized every year by one of the Spanish or Portuguese groups working in this area and is supported by the Spanish Society of Gravitation and Relativity (SEGRE). This book will be of interest to researchers in mathematics and physics.