Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Brain Insulin Resistance in Neurodevelopmental and Neurodegenerative Disorders: Mind the Gap!
  • Language: en
  • Pages: 157

Brain Insulin Resistance in Neurodevelopmental and Neurodegenerative Disorders: Mind the Gap!

The failure of insulin signaling – a condition known as insulin resistance – is a key pathological feature of both type 2 diabetes (T2DM, systemic insulin resistance) and Alzheimer’s disease and related dementias (ADRDs, brain insulin resistance) and greatly contribute to their development. Considerable overlap has been identified in the risk factors, comorbidities and putative pathophysiological mechanisms of ADRDs and T2DM, thus proposing AD as type 3 diabetes.

Mechanisms of Neuronal Recovery in the Central Nervous System
  • Language: en
  • Pages: 255
Metabolic Shifting: Nutrition, Exercise and Timing
  • Language: en
  • Pages: 150
Neural Metabolism In Vivo
  • Language: en
  • Pages: 1168

Neural Metabolism In Vivo

From the preface: “Neural Metabolism In Vivo aims to provide a comprehensive overview of neurobiology by presenting the basic principles of up-to-date and cutting-edge technology, as well as their application in assessing the functional, morphological and metabolic aspects of the brain. Investigation of neural activity of the living brain via neurovascular coupling using multimodal imaging techniques extended our understanding of fundamental neurophysiological mechanisms, regulation of cerebral blood flow in connection to neural activity and the interplay between neurons, astrocytes and blood vessels. Constant delivery of glucose and oxygen for energy metabolism is vital for brain function...

Transcellular Cycles underlying Neurotransmission
  • Language: en
  • Pages: 107

Transcellular Cycles underlying Neurotransmission

Synaptic transmission demands the operation of a highly specialized metabolic machinery involving the transfer of metabolites and neurotransmitters between neurons, astrocytes and microvessels. In the last years, important advances have occurred in our understanding of the mechanisms underlying cerebral activation, neuroglial coupling and the associated neurovascular response. Briefly, exacerbated oxygen consumption in stimulated neurons is thought to trigger glycolytic lactate and glucose transfer from astrocytes which, in turn, obtain these fuels from the microvasculature. Neurotransmitter release is made possible by a combination of transcellular cycles exchanging metabolites between thes...

Proceedings of the International School on Magnetic Resonance and Brain Function - XII Workshop
  • Language: en
  • Pages: 150

Proceedings of the International School on Magnetic Resonance and Brain Function - XII Workshop

In the last thirty years, Magnetic Resonance has generated a wide revolution in biomedical research and in medical imaging in general. More recently, the "in vivo" studies of the human brain were extended by new original ways to the dynamic study of function and metabolism of the human brain. The enormous interest in expanding the investigation of the brain is emphasizing the search for new NMR methods capable of extracting information of so-far obscure aspects of the brain function. In fact, many quantitative approaches have been proposed in order to complement the information obtained by functional MRI, and several multimodal and multiparametric approaches have been developed to exploit th...

Astrocytic-neuronal-astrocytic Pathway Selection for Formation and Degradation of Glutamate/GABA
  • Language: en
  • Pages: 169

Astrocytic-neuronal-astrocytic Pathway Selection for Formation and Degradation of Glutamate/GABA

Endocrinological research early recognized the importance of intercellular interactions and realized the importance of glutamatergic and GABAergic signaling. In turn this signalling depends on elaborate interactions between astrocytes and neurons, without which neurons would be unable to produce, reuse and metabolize transmitter glutamate and GABA. Details of these subjects are described in this Research Topic by key investigators in this field. It focuses on the intricate and extremely swift pathway producing these amino acid transmitters from glucose in brain but also discusses difficulties in determining expression of some of the necessary genes in astrocytes and related processes in pancreatic islets. However, it does not discuss how closely associated astrocytes and neurons are anatomically, enabling these interactions. This is elegantly shown in this cover image, kindly provided by Professor Andreas Reichenbach (University of Leipzig, Germany).

Neural Control of Energy Homeostasis and Energy Homeostasis Regulation of Brain Function
  • Language: en
  • Pages: 197
Obesity and Diabetes: Implications for Brain-Immunometabolism
  • Language: en
  • Pages: 204