You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book reviews recent developments in the field of polarons, starting with the basics and covering a number of active directions of research. It integrates theory and experimental results.
This book first introduces a single polaron and describes recent achievements in analytical and numerical studies of polaron properties in different e-ph models. It then describes multi-polaron physics as well as many key physical properties of high-temperature superconductors, colossal magnetoresistance oxides, conducting polymers and molecular nanowires, which were understood with polarons and bipolarons.
Solid State Physics
This three-volume book provides a comprehensive review of experiments in very strong magnetic fields that can only be generated with very special magnets. The first volume is entirely devoted to the technology of laboratory magnets: permanent, superconducting, high-power water-cooled and hybrid; pulsed magnets, both nondestructive and destructive (megagauss fields). Volumes 2 and 3 contain reviews of the different areas of research where strong magnetic fields are an essential research tool. These volumes deal primarily with solid-state physics; other research areas covered are biological systems, chemistry, atomic and molecular physics, nuclear resonance, plasma physics and astrophysics (including QED).
This three-volume book provides a comprehensive review of experiments in very strong magnetic fields that can only be generated with very special magnets. The first volume is entirely devoted to the technology of laboratory magnets: permanent, superconducting, high-power water-cooled and hybrid; pulsed magnets, both nondestructive and destructive (megagauss fields). Volumes 2 and 3 contain reviews of the different areas of research where strong magnetic fields are an essential research tool. These volumes deal primarily with solid-state physics; other research areas covered are biological systems, chemistry, atomic and molecular physics, nuclear resonance, plasma physics and astrophysics (including QED).
Topological restrictions. These are relevant to the understanding of the statistical properties of elementary particles and the entanglement phenomena in polymer physics and biophysics. The Chern-Simons theory of particles with fractional statistics (anyons) is introduced and applied to explain the fractional quantum Hall effect." "The relevance of path integrals to financial markets is discussed, and improvements of the famous Black-Scholes formula for option prices are developed which account for the fact that large market fluctuations occur much more frequently than in Gaussian distributions." --Book Jacket.
The idea of the workshop on Functional Integration, Theory and Applications, held in Louvain-Ia-Neuve from November 6 to 9 1979, was to put in close and informal contact, during a few days, active workers in the field. There is no doubt now that functional integration is a tool that is being applied in all branches of modern physics. Since the earlier works of Dirac and Feynman enormous progress has been made, but unfortunately we lack still a unifying and rigo rous mathematical framework to account for all the situations in which one is interested. We are then in presence of a rapid ly changing field in which new achievements, proposals, and points of view are the normal pattern. Considering this state of affairs we have decided to order the articles starting from the more fundamental and ambitious from the point of view of mathematical rigour, followed by ar ticles in which the main interest is the application to con crete physical situations. It is obvious that this ordering should not be taken too seriously since in many cases there will be an interplay of both objects.
This volume contains contributions presented at the International Conference "The Application of High Magnetic Fields in Semiconductor Physics", which was held at the University of Wiirzburg from August 22 to 26, 1988. In the tradition of previous Wiirzburg meetings on the subject - the first conference was held in 1972 - only invited papers were presented orally. All 42 lecturers were asked to review their subject to some extent so that this book gives a good overview of the present state of the respective topic. A look at the contents shows that the subjects which have been treated at previous conferences have not lost their relevance. On the contrary, the application of high magnetic fiel...
The motto of connectivity and superconductivity is that the solutions of the Ginzburg–Landau equations are qualitatively in?uenced by the topology of the boundaries. Special attention is given to the “zero set”,the set of the positions (usually known as “quantum vortices”) where the order parameter vanishes. The paradigm of connectivity and superconductivity is the Little– Parks e?ect,discussed in most textbooks on superconductivity. This volume is intended to serve as a reference book for graduate students and researchers in physics or mathematics interested in superconductivity, or in the Schr ̈ odinger equation as a limiting case of the Ginzburg–Landau equations. The e?ects...
Provides the theoretical background needed by physicists, engineers and students to simulate nano-devices, semiconductor quantum dots and molecular devices. It presents in a unified way the theoretical concepts, the more recent semi-empirical and ab initio methods, and their application to experiments. The topics include quantum confinement, dielectric and optical properties, non-radiative processes, defects and impurities, and quantum transport. This guidebook not only provides newcomers with an accessible overview (requiring only basic knowledge of quantum mechanics and solid-state physics) but also provides active researchers with practical simulation tools.