You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book is concerned with discontinuous groups of motions of the unique connected and simply connected Riemannian 3-manifold of constant curva ture -1, which is traditionally called hyperbolic 3-space. This space is the 3-dimensional instance of an analogous Riemannian manifold which exists uniquely in every dimension n :::: 2. The hyperbolic spaces appeared first in the work of Lobachevski in the first half of the 19th century. Very early in the last century the group of isometries of these spaces was studied by Steiner, when he looked at the group generated by the inversions in spheres. The ge ometries underlying the hyperbolic spaces were of fundamental importance since Lobachevski, Bolyai and Gauß had observed that they do not satisfy the axiom of parallels. Already in the classical works several concrete coordinate models of hy perbolic 3-space have appeared. They make explicit computations possible and also give identifications of the full group of motions or isometries with well-known matrix groups. One such model, due to H. Poincare, is the upper 3 half-space IH in JR . The group of isometries is then identified with an exten sion of index 2 of the group PSL(2,
This book is concerned with discontinuous groups of motions of the unique connected and simply connected Riemannian 3-manifold of constant curva ture -1, which is traditionally called hyperbolic 3-space. This space is the 3-dimensional instance of an analogous Riemannian manifold which exists uniquely in every dimension n :::: 2. The hyperbolic spaces appeared first in the work of Lobachevski in the first half of the 19th century. Very early in the last century the group of isometries of these spaces was studied by Steiner, when he looked at the group generated by the inversions in spheres. The ge ometries underlying the hyperbolic spaces were of fundamental importance since Lobachevski, Bolyai and Gauß had observed that they do not satisfy the axiom of parallels. Already in the classical works several concrete coordinate models of hy perbolic 3-space have appeared. They make explicit computations possible and also give identifications of the full group of motions or isometries with well-known matrix groups. One such model, due to H. Poincare, is the upper 3 half-space IH in JR . The group of isometries is then identified with an exten sion of index 2 of the group PSL(2,
Each volume includes "Wissenschaftliche zeitschriften."
Dieses Lehrbuch vermittelt dem Leser ein solides Basiswissen, wie es für weite Bereiche der Mathematik unerläßlich ist, insbesondere für die reelle Analysis, Funktionalanalysis, Wahrscheinlichkeitstheorie und mathematische Statistik. Thematische Schwerpunkte sind Produktmaße, Fourier-Transformation, Transformationsformel, Konvergenzbegriffe, absolute Stetigkeit und Maße auf topologischen Räumen. Höhepunkte sind die Herleitung des Rieszschen Darstellungssatzes mit Hilfe eines Fortsetzungsresultats von Kisynski und der Beweis der Existenz und Eindeutigkeit des Haarschen Maßes. Ferner enthält das Buch einen Abschnitt über Konvergenz von Maßen und den Satz von Prochorov. Der Text wird aufgelockert durch zahlreiche mathematikhistorische Ausflüge und Kurzporträts von Mathematikern, die zum Thema des Buches wichtige Beiträge geliefert haben. Eine Vielzahl von Übungsaufgaben vertieft den Stoff.
None